(-1.2,-2.0) and (1.9,2.2) are the best approximations of the solutions to this system.
Option B
<u>Step-by-step explanation:</u>
Here, we have a graph of two functions from which we need to find the approximate value of common solutions. Let's find this:
First look at where we have intersection points, In first quadrant & in third quadrant.
<u>At first quadrant:</u>
Draw perpendicular lines from x-axis & y-axis from this point . After doing this we can clearly see that the perpendicular lines cut x-axis at x=1.9 and y-axis at y=2.2. So, one point is (1.9,2.2)
<u>At Third quadrant:</u>
Draw perpendicular lines from x-axis & y-axis from this point. After doing this we can clearly see that the perpendicular lines cut x-axis at x=-1.2 and y-axis at y= -2.0. So, other point is (-1.2,-2.0).
Answer:
c
Step-by-step explanation:
The first step to dividing fractions is to find the reciprocal (reverse the numerator and denominator) of the second fraction. Next, multiply the two numerators. Then, multiply the two denominators. Finally, simplify the fractions if needed.
Answer:
i think it's c but I'm not 100% sure
<span>The curve formed by a quadratic equation is called a PARABOLA</span>