1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tatiana [17]
3 years ago
15

Which phrase describes the algebraic expression 6x?

Mathematics
2 answers:
Allisa [31]3 years ago
5 0

The algebraic expression uses the terms to denote symbols

sum of means addition

difference of means subtraction

product of means multiplication

quotient of means division

Here we have the term 6x

which actually means 6 times x or

6 multiplied by x

hence by multiplication we use the word product of

so we have the product of 6 and a number as our right answer

Veseljchak [2.6K]3 years ago
3 0
The answer is C,the product of 6 and a number
You might be interested in
The equation 4x-45=y is used to find your profit y in dollars from buying $45 of supplies and washing cars for $4 what does the
Mrrafil [7]
33333333333333336666666666
5 0
3 years ago
Hey, babes! Here is a question for today-
Papessa [141]

Answer:

The equation has the form: y = a + b * x where a and b are constant numbers. The variable x is the independent variable, and y is the dependent variable. Typically, you choose a value to substitute for the independent variable and then solve for the dependent variable.

6 0
3 years ago
Solve for x in the equation 2x^2+3x-7=x^2+5x+39
Shalnov [3]
Hey there, hope I can help!

\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides}
2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)

Assuming you know how to simplify this, I will not show the steps but can add them later on upon request
x^2-2x-46=0

Lets use the quadratic formula now
\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\left(-46\right)}}{2\cdot \:1}

\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

Multiply the numbers 2 * 1 = 2
\frac{2+\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}

\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \sqrt{\left(-2\right)^2+1\cdot \:4\cdot \:46} \ \textgreater \  \left(-2\right)^2=2^2, 2^2 = 4

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \  \sqrt{4+184} \ \textgreater \  \sqrt{188} \ \textgreater \  2 + \sqrt{188}
\frac{2+\sqrt{188}}{2} \ \textgreater \  Prime\;factorize\;188 \ \textgreater \  2^2\cdot \:47 \ \textgreater \  \sqrt{2^2\cdot \:47}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \  \sqrt{47}\sqrt{2^2}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \  \sqrt{2^2}=2 \ \textgreater \  2\sqrt{47} \ \textgreater \  \frac{2+2\sqrt{47}}{2}

Factor\;2+2\sqrt{47} \ \textgreater \  Rewrite\;as\;1\cdot \:2+2\sqrt{47}
\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \  2\left(1+\sqrt{47}\right) \ \textgreater \  \frac{2\left(1+\sqrt{47}\right)}{2}

\mathrm{Divide\:the\:numbers:}\:\frac{2}{2}=1 \ \textgreater \  1+\sqrt{47}

Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.

\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

\frac{2-\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  2-\sqrt{188} \ \textgreater \  \frac{2-\sqrt{188}}{2}

\sqrt{188} = 2\sqrt{47} \ \textgreater \  \frac{2-2\sqrt{47}}{2}

2-2\sqrt{47} \ \textgreater \  2\left(1-\sqrt{47}\right) \ \textgreater \  \frac{2\left(1-\sqrt{47}\right)}{2} \ \textgreater \  1-\sqrt{47}

Therefore our final solutions are
x=1+\sqrt{47},\:x=1-\sqrt{47}

Hope this helps!
8 0
3 years ago
Read 2 more answers
Middleschool <br> math problem
fgiga [73]

Answer:

2.14%

Step-by-step explanation:

Hopefully this helps!

4 0
3 years ago
Read 2 more answers
A pile of 10 000 paper is 89 cm thick. How thick is one sheet of paper?
Iteru [2.4K]

Answer:

0.0089 cm

Step-by-step explanation:

89/10 000

=0.0089

8 0
3 years ago
Other questions:
  • Hi I need help this is the question I will wait a while and I will thank you even if you wrong c:
    8·2 answers
  • Use the counting principle to determine the number of elements in the sample space. Two digits are selected without replacement
    10·1 answer
  • The bottom two questions that correspond to the word problem... I don't get it
    8·1 answer
  • You are given the great circle of a sphere is a length of 60 miles. What is the volume of the sphere?
    13·1 answer
  • The rquation of a citcle is x^2+y^2=16 what is the radius of the circle
    8·1 answer
  • Please help I will give brainliest <br> A.3<br> B.6<br> C. 9<br> D. 12
    7·2 answers
  • Select all the pairs of like terms in the expression.
    15·2 answers
  • Which product is greater than 3/5<br><br> Look at the picture ☺️<br> Pls answer ASAP✨
    12·1 answer
  • FIRST TO ANSWER WILL GET BRAINLIEST!
    7·2 answers
  • Octavia is making cotton candy. She uses 17.5 cups of sugar to make 5 bags of cotton candy. At this rate, how many cups of sugar
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!