Answer: Horizontal Asymptote: y = 7
Y = 3^x + 7
Step-by-step explanation:
Exponential functions have a horizontal asymptote. The equation of the horizontal asymptote is y = 7
Answer:
We verified that ![a^3+b^3+c^3-3abc=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]](https://tex.z-dn.net/?f=a%5E3%2Bb%5E3%2Bc%5E3-3abc%3D%5Cfrac%7Ba%2Bb%2Bc%7D%7B2%7D%5B%28a-b%29%5E2%2B%28b-c%29%5E2%2B%28c-a%29%5E2%5D)
Hence proved
Step-by-step explanation:
Given equation is ![a^3+b^3+c^3-3abc=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]](https://tex.z-dn.net/?f=a%5E3%2Bb%5E3%2Bc%5E3-3abc%3D%5Cfrac%7Ba%2Bb%2Bc%7D%7B2%7D%5B%28a-b%29%5E2%2B%28b-c%29%5E2%2B%28c-a%29%5E2%5D)
We have to prove that ![a^3+b^3+c^3-3abc=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]](https://tex.z-dn.net/?f=a%5E3%2Bb%5E3%2Bc%5E3-3abc%3D%5Cfrac%7Ba%2Bb%2Bc%7D%7B2%7D%5B%28a-b%29%5E2%2B%28b-c%29%5E2%2B%28c-a%29%5E2%5D)
That is to prove that LHS=RHS
Now taking RHS
![\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]](https://tex.z-dn.net/?f=%5Cfrac%7Ba%2Bb%2Bc%7D%7B2%7D%5B%28a-b%29%5E2%2B%28b-c%29%5E2%2B%28c-a%29%5E2%5D)
(using
)
(adding the like terms)
![=\frac{a+b+c}{2}[2a^2+2b^2+2c^2-2ab-2bc-2ac]](https://tex.z-dn.net/?f=%3D%5Cfrac%7Ba%2Bb%2Bc%7D%7B2%7D%5B2a%5E2%2B2b%5E2%2B2c%5E2-2ab-2bc-2ac%5D)
![=\frac{a+b+c}{2}\times 2[a^2+b^2+c^2-ab-bc-ac]](https://tex.z-dn.net/?f=%3D%5Cfrac%7Ba%2Bb%2Bc%7D%7B2%7D%5Ctimes%202%5Ba%5E2%2Bb%5E2%2Bc%5E2-ab-bc-ac%5D)
![=a+b+c[a^2+b^2+c^2-ab-bc-ac]](https://tex.z-dn.net/?f=%3Da%2Bb%2Bc%5Ba%5E2%2Bb%5E2%2Bc%5E2-ab-bc-ac%5D)
Now multiply the each term to another each term in the factor
![=a^3+ab^2+ac^2-a^2b-abc-a^2c+ba62+b^3+bc^2-ab^2-b^2c-abc+ca^2+cb^2+c^3-abc-bc^2-ac^2]](https://tex.z-dn.net/?f=%3Da%5E3%2Bab%5E2%2Bac%5E2-a%5E2b-abc-a%5E2c%2Bba62%2Bb%5E3%2Bbc%5E2-ab%5E2-b%5E2c-abc%2Bca%5E2%2Bcb%5E2%2Bc%5E3-abc-bc%5E2-ac%5E2%5D)
(adding the like terms and other terms getting cancelled)
=LHS
Therefore LHS=RHS
Therefore ![a^3+b^3+c^3-3abc=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]](https://tex.z-dn.net/?f=a%5E3%2Bb%5E3%2Bc%5E3-3abc%3D%5Cfrac%7Ba%2Bb%2Bc%7D%7B2%7D%5B%28a-b%29%5E2%2B%28b-c%29%5E2%2B%28c-a%29%5E2%5D)
Hence proved.
Part A: c for cost. c=0.31m+0.5
0.31m is the cost per minute. 0.5 is cost per call.
Part B: 0.31m+0.5=5.15 to solve we must rearrange.
subtract 0.5 from each side giving us 0.31m=4.85
divide by 0.31 giving us m=15.65