Answer:
I want to help you but i cant.
Explanation:
please provide a screenshot or photos of moons 1-4
The shear modulus, or the modulus of rigidity, is derived from the torsion of a cylindrical test piece. It describes the material's response to shear stress. The shear modulus is one of several quantities for measuring the stiffness of materials and it arises in the generalized Hooke's law. ...
Galileo successfully demonstrated that the balls took the same amount of time to reach the ground.
Choice B
So the problem ask to calculate the magnitude of the average force applied to the ball if its mass is 0.2kg changes its velocity from 20m/s to 12m/s and the time contact with the ball with the wall is 60 ms. In my calculation the best answer would be 107N.
Answer:
When the bat hits the ball, it exerts some force on the ball. Just think about a home run hitter hitting a stationary ball. How far do you think it will go? Will it go more than 400 ft.? Probably not. While the kinetic energy transferred from the bat to the ball accounts for some energy of the ball, it does not account for all. Where is the mysterious energy coming from?
The answer is conservation of momentum. I just said momentum is conserved but how do I know that? I know that because of Newton's 2nd law: F=ma (Force equals mass times acceleration)
Conservation of momentum means that the harder you throw you, the harder the ball will bounce back at you. That is the reason it is easier to hit a home run on a fast ball than a curveball.
Conservation of momentum also means that the bat can transfer some of its momentum to the ball. This is why it is better to use a heavier bat if you swing just as fast. The momentum is the product of the mass and velocity, so to make it easier to understand;
a heavier bat swung at the same speed as a lighter bat will have more momentum.