Answer: 233.33.
Step-by-step explanation: Consider marking this answer as brainliest if it helped you out.
Answer:
2r(2r)
R
Pi/4
Pi times r cubed
Step-by-step explanation:
Believe it or leave it
The table and the graph is shown in the following picture
Answer:
![\sqrt[5]{2^4}](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7B2%5E4%7D)
Step-by-step explanation:
Maybe you want 2^(4/5) in radical form.
The denominator of the fractional power is the index of the root. Either the inside or the outside can be raised to the power of the numerator.
![2^{\frac{4}{5}}=\boxed{\sqrt[5]{2^4}=(\sqrt[5]{2})^4}](https://tex.z-dn.net/?f=2%5E%7B%5Cfrac%7B4%7D%7B5%7D%7D%3D%5Cboxed%7B%5Csqrt%5B5%5D%7B2%5E4%7D%3D%28%5Csqrt%5B5%5D%7B2%7D%29%5E4%7D)
__
In many cases, it is preferred to keep the power inside the radical symbol.
<span>Here let the quadratic equation be ax^2 + bx + c
We know that a=5 from the question.
Since the roots are 6 and 2, the quadratic equation would take the form of a product like (a1x-b1)(a2x-b2).
However, let's assume that a2=1 and b2=6,
Since a=5, a1=5, then 5x-b1=5(x-2). Solving this shows that b1=10
So, the equation is (5x-10)(x-6)</span>