Answer:
x and y = 0
the question looks weird and almost wrong because when you subtract the equations, you are left with nothing
Step-by-step explanation:
Multiply the top equation by 3 to make the -x a -3x instead.
Then do the top equation - the bottom equation
At this point you should be left with x
there are 5 solutions. Or 4
<u></u>
corresponds to TR. correct option b.
<u>Step-by-step explanation:</u>
In the given parallelogram or rectangle , we have a diagonal RT . We need to find which side is in correspondence with side/Diagonal RT of parallelogram URST .
<u>Side TU:</u>
In triangle UTR , we see that TR is hypotenuse and is the longest side among UR & TU . So , TR can never be equal in length to UR & TU . So there's no correspondence of Side TU with RT.
<u>Side TR:</u>
Since, direction of sides are not mentioned here , we can say that TR & RT is parallel & equal to each other . So , TR is in correspondence with side/Diagonal RT of parallelogram URST .
<u>Side UR:</u>
In triangle UTR , we see that TR is hypotenuse and is the longest side among UR & TU . So , TR can never be equal in length to UR & TU . So there's no correspondence of Side UR with RT.
224 is the times to were it’s put in the outside order inside of it
Answer:
74.86% probability that a component is at least 12 centimeters long.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

Variance is 9.
The standard deviation is the square root of the variance.
So

Calculate the probability that a component is at least 12 centimeters long.
This is 1 subtracted by the pvalue of Z when X = 12. So



has a pvalue of 0.2514.
1-0.2514 = 0.7486
74.86% probability that a component is at least 12 centimeters long.