Answer:
V = (About) 22.2, Graph = First graph/Graph in the attachment
Step-by-step explanation:
Remember that in all these cases, we have a specified method to use, the washer method, disk method, and the cylindrical shell method. Keep in mind that the washer and disk method are one in the same, but I feel that the disk method is better as it avoids splitting the integral into two, and rewriting the curves. Here we will go with the disk method.
![\mathrm{V\:=\:\pi \int _a^b\left(r\right)^2dy\:},\\\mathrm{V\:=\:\int _1^3\:\pi \left[\left(1+\frac{2}{y}\right)^2-1\right]dy}](https://tex.z-dn.net/?f=%5Cmathrm%7BV%5C%3A%3D%5C%3A%5Cpi%20%5Cint%20_a%5Eb%5Cleft%28r%5Cright%29%5E2dy%5C%3A%7D%2C%5C%5C%5Cmathrm%7BV%5C%3A%3D%5C%3A%5Cint%20_1%5E3%5C%3A%5Cpi%20%5Cleft%5B%5Cleft%281%2B%5Cfrac%7B2%7D%7By%7D%5Cright%29%5E2-1%5Cright%5Ddy%7D)
The plus 1 in '1 + 2/x' is shifting this graph up from where it is rotating, but the negative 1 is subtracting the area between the y-axis and the shaded region, so that when it's flipped around, it becomes a washer.
![V\:=\:\int _1^3\:\pi \left[\left(1+\frac{2}{y}\right)^2-1\right]dy,\\\\\mathrm{Take\:the\:constant\:out}:\quad \int a\cdot f\left(x\right)dx=a\cdot \int f\left(x\right)dx\\=\pi \cdot \int _1^3\left(1+\frac{2}{y}\right)^2-1dy\\\\\mathrm{Apply\:the\:Sum\:Rule}:\quad \int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx\\= \pi \left(\int _1^3\left(1+\frac{2}{y}\right)^2dy-\int _1^31dy\right)\\\\](https://tex.z-dn.net/?f=V%5C%3A%3D%5C%3A%5Cint%20_1%5E3%5C%3A%5Cpi%20%5Cleft%5B%5Cleft%281%2B%5Cfrac%7B2%7D%7By%7D%5Cright%29%5E2-1%5Cright%5Ddy%2C%5C%5C%5C%5C%5Cmathrm%7BTake%5C%3Athe%5C%3Aconstant%5C%3Aout%7D%3A%5Cquad%20%5Cint%20a%5Ccdot%20f%5Cleft%28x%5Cright%29dx%3Da%5Ccdot%20%5Cint%20f%5Cleft%28x%5Cright%29dx%5C%5C%3D%5Cpi%20%5Ccdot%20%5Cint%20_1%5E3%5Cleft%281%2B%5Cfrac%7B2%7D%7By%7D%5Cright%29%5E2-1dy%5C%5C%5C%5C%5Cmathrm%7BApply%5C%3Athe%5C%3ASum%5C%3ARule%7D%3A%5Cquad%20%5Cint%20f%5Cleft%28x%5Cright%29%5Cpm%20g%5Cleft%28x%5Cright%29dx%3D%5Cint%20f%5Cleft%28x%5Cright%29dx%5Cpm%20%5Cint%20g%5Cleft%28x%5Cright%29dx%5C%5C%3D%20%5Cpi%20%5Cleft%28%5Cint%20_1%5E3%5Cleft%281%2B%5Cfrac%7B2%7D%7By%7D%5Cright%29%5E2dy-%5Cint%20_1%5E31dy%5Cright%29%5C%5C%5C%5C)

Our exact solution will be V = π(4In(3) + 8/3). In decimal form it will be about 22.2 however. Try both solution if you like, but it would be better to use 22.2. Your graph will just be a plot under the curve y = 2/x, the first graph.
Answer:
4
Step-by-step explanation:
duh
3n+2n= 5n
22+38=60
180-60=60
60=5n
n=12
Answer:
198
Step-by-step explanation:
Parentheses
Exponents
Multiply
Divide
Add
Subtract
The vertices coordinates following a reflection along the y-axis are S(-6,6), T(2,6), U(2,0), V(-6,0).
<h3>What is reflection?</h3>
A reflection point is created when a figure is constructed around a single point known as the point of reflection or the figure's centre. There is an exact opposite point on the other side of each point in the figure. Under the point of reflection, the figure's size and shape are unaltered.
Given points are p ( 8,-2 ) Q(8,5) R( 4,-2 )
The reflection of the points
P (8,-2) = P (-8, 2)
Q (8,5) = Q (-8, -5)
R (4,-2) = R (-4, 2)
Therefore, the coordinates of the vertices after a reflection across the Y-axis are P (-8, 2) Q (-2, 6) R (-2, 0)
To know more about reflection, visit:
brainly.com/question/26642069
#SPJ9