If the beam is in static equilibrium, meaning the Net Torque on it about the support is zero, the value of x₁ is 2.46m
Given the data in the question;
- Length of the massless beam;

- Distance of support from the left end;

- First mass;

- Distance of beam from the left end( m₁ is attached to );

- Second mass;

- Distance of beam from the right of the support( m₂ is attached to );

Now, since it is mentioned that the beam is in static equilibrium, the Net Torque on it about the support must be zero.
Hence, 
we divide both sides by 

Next, we make
, the subject of the formula
![x_1 = x - [ \frac{m_2x_2}{m_1} ]](https://tex.z-dn.net/?f=x_1%20%3D%20x%20-%20%5B%20%5Cfrac%7Bm_2x_2%7D%7Bm_1%7D%20%5D)
We substitute in our given values
![x_1 = 3.00m - [ \frac{61.7kg\ * \ 0.273m}{31.3kg} ]](https://tex.z-dn.net/?f=x_1%20%3D%203.00m%20-%20%5B%20%5Cfrac%7B61.7kg%5C%20%2A%20%5C%200.273m%7D%7B31.3kg%7D%20%5D)


Therefore, If the beam is in static equilibrium, meaning the Net Torque on it about the support is zero, the value of x₁ is 2.46m
Learn more; brainly.com/question/3882839
B- light bends as it passes through an object ( a would be reflect)
Answer:
346.70015 m/s
Explanation:
In the x axis speed is

In the y axis

The resultant velocity is given by

The magnitude of the overall velocity of the hamper at the instant it strikes the surface of the ocean is 346.70015 m/s
Answer:
K = 373.13 N/m
Explanation:
The force of the spring is equals to:
Fe - m*g = 0 => Fe = m*g
Using Hook's law:
K*X = m*g Solving for K:
K = m/X * g
In this equation, m/X is the inverse of the given slope. So, using this value we can calculate the spring's constant:
K = 10 / 0.0268 = 373.13N/m
Answer:
The acceleration is 0.
Explanation:
The formula for acceleration is:
a = (v-u)/t
If v and u are equal, thus it would be 0 when subtracted, and anything divided by 0 is 0.