
The net force acting on the block is ~


So, the Answer in the boxes will be ~

<em><u>Invertebrat</u></em><em><u>e</u></em><em><u> </u></em><em><u>means</u></em><em><u> </u></em><em><u>those</u></em><em><u> </u></em><em><u>organism</u></em><em><u> </u></em><em><u>which</u></em><em><u> </u></em><em><u>doesnot</u></em><em><u> </u></em><em><u>have</u></em><em><u> </u></em><em><u>backbone</u></em><em><u> </u></em><em><u>in</u></em><em><u> </u></em><em><u>their</u></em><em><u> </u></em><em><u>body</u></em><em><u> </u></em><em><u>.</u></em><em><u>Some</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>t</u></em><em><u>he</u></em><em><u> </u></em><em><u>examples</u></em><em><u> </u></em><em><u>are</u></em><em><u>:</u></em>
<em><u>1</u></em><em><u>.</u></em><em><u>S</u></em><em><u>p</u></em><em><u>i</u></em><em><u>d</u></em><em><u>e</u></em><em><u>r</u></em>
<em><u>2</u></em><em><u>.</u></em><em><u>e</u></em><em><u>a</u></em><em><u>r</u></em><em><u>t</u></em><em><u>h</u></em><em><u>w</u></em><em><u>o</u></em><em><u>r</u></em><em><u>m</u></em>
<em><u>3</u></em><em><u>.</u></em><em><u>S</u></em><em><u>t</u></em><em><u>a</u></em><em><u>r</u></em><em><u>f</u></em><em><u>i</u></em><em><u>s</u></em><em><u>h</u></em>
<em><u>4</u></em><em><u>.</u></em><em><u>S</u></em><em><u>e</u></em><em><u>a</u></em><em><u> </u></em><em><u>urchins</u></em><em><u>.</u></em>
<em><u>hope</u></em><em><u> </u></em><em><u>this</u></em><em><u> </u></em><em><u>will</u></em><em><u> </u></em><em><u>help</u></em><em><u> </u></em><em><u>u</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>lot</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
Answer:
<em>k = 25.18 N/m</em>
Explanation:
<u>Simple Harmonic Oscillator</u>
It consists of a weight attached to one end of a spring being allowed to move forth and back.
If m is the mass of the weight and k is the constant of the spring, the period of the oscillation is given by:

If the period is known, we can find the value of the constant by solving for k:

Substituting the given values m=5 Kg and T=2.8 seconds:

k = 25.18 N/m
Answer:
your in mr langfords class
Explanation:
bruh moment
Planets orbit the sun in the paths which are known as elliptical orbit. Each planet has its own orbit around the sun and direction in which all the planets orbit around the sun are the same. These orbits were well explained by the astronomer Kepler. The gravity of the Sun keeps the planets in their orbits. They stay in their orbits because there is no other force in the Solar System which can stop them.