Given:
Initial number of bacteria = 3000
With a growth constant (k) of 2.8 per hour.
To find:
The number of hours it will take to be 15,000 bacteria.
Solution:
Let P(t) be the number of bacteria after t number of hours.
The exponential growth model (continuously) is:

Where,
is the initial value, k is the growth constant and t is the number of years.
Putting
in the above formula, we get



Taking ln on both sides, we get

![[\because \ln e^x=x]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Cln%20e%5Ex%3Dx%5D)



Therefore, the number of bacteria will be 15,000 after 0.575 hours.
<em>Answer:</em>
<em>The answer is 18k + 22p - 10</em>
<em>Step-by-step explanation:</em>
<em>That is the right answer </em>
Answer:
7 cents/mile
Step-by-step explanation:
You are looking for a unit rate of cents per mile.
Change the dollar amount to cents, and divide by the number of miles.
$13.08 * (100 cents)/$ = 1308 cents
(1308 cents)/(183 miles) = 7.001 cents/mile
To the nearest thousand is 23,000 and the nearest ten thousand is 20,000