0.93 = 0.9
0.18 = 0.2
0.9 + 0.2 = 1.1
Answer 1.1
Y= -1/2x - 4
hope this helps! :)
Answer:
Step-by-step explanation:
Total number of toll-free area codes = 6
A complete number will be of the form:
800-abc-defg
Where abcdefg can be any 7 numbers from 0 to 9. This holds true for all the 6 area codes.
Finding the possible toll free numbers for one area code and multiplying that by 6 will give use the total number of toll free numbers for all 6 area codes.
Considering: 800-abc-defg
The first number "a" can take any digit from 0 to 9. So there are 10 possibilities for this place. Similarly, the second number can take any digit from 0 to 9, so there are 10 possibilities for this place as well and same goes for all the 7 numbers.
Since, there are 10 possibilities for each of the 7 places, according to the fundamental principle of counting, the total possible toll free numbers for one area code would be:
Possible toll free numbers for 1 area code = 10 x 10 x 10 x 10 x 10 x 10 x 10 =
Since, there are 6 toll-free are codes in total, the total number of toll-free numbers for all 6 area codes =
Given the domain {-4, 0, 5}, what is the range for the relation 12x 6y = 24? a. {2, 4, 9} b. {-4, 4, 14} c. {12, 4, -6} d. {-12,
xz_007 [3.2K]
The domain of the function 12x + 6y = 24 exists {-4, 0, 5}, then the range of the function exists {12, 4, -6}.
<h3>How to determine the range of a function?</h3>
Given: 12x + 6y = 24
Here x stands for the input and y stands for the output
Replacing y with f(x)
12x + 6f(x) = 24
6f(x) = 24 - 12x
f(x) = (24 - 12x)/6
Domain = {-4, 0, 5}
Put the elements of the domain, one by one, to estimate the range
f(-4) = (24 - 12((-4))/6
= (72)/6 = 12
f(0) = (24 - 12(0)/6
= (24)/6 = 4
f(5) = (24 - 12(5)/6
= (-36)/6 = -6
The range exists {12, 4, -6}
Therefore, the correct answer is option c. {12, 4, -6}.
To learn more about Range, Domain and functions refer to:
brainly.com/question/1942755
#SPJ4