Answer:
p-e< p < p+e
(0.061 - 0.025) < 0.061 < (0.061 + 0.025)
0.036 < 0.061 < 0.086
Step-by-step explanation:
Given;
Confidence interval CI = (a,b) = (0.036, 0.086)
Lower bound a = 0.036
Upper bound b = 0.086
To express in the form;
p-e< p < p+e
Where;
p = mean Proportion
and
e = margin of error
The mean p =( lower bound + higher bound)/2
p = (a+b)/2
Substituting the values;
p = (0.036+0.086)/2
Mean Proportion p = 0.061
The margin of error e = (b-a)/2
Substituting the given values;
e = (0.086-0.036)/2
e = 0.025
Re-writing in the stated form, with p = 0.061 and e = 0.025
p-e< p < p+e
(0.061 - 0.025) < 0.061 < (0.061 + 0.025)
0.036 < 0.061 < 0.086
Answer:
B
Step-by-step explanation:
2x = log3 (y - 1)
y - 1 = 3^2x
y = 3^2x + 1
Answer:
Step-by-step explanation:
15 i really hope this helps
Answer:
10.03% probability of getting a cup weighing more than 8.64oz
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:

What is the probability of getting a cup weighing more than 8.64oz
This is the 1 subtracted by the pvalue of Z when X = 8.64. So

has a pvalue of 0.8997
1 - 0.8997 = 0.1003
10.03% probability of getting a cup weighing more than 8.64oz