1.) Write down the number of atoms that comprise each compound on either side of the equation. Using the chemical equation you can identify the atoms of each element in the reaction. Because a chemical reaction can never create or destroy new matter, a given equation is unbalanced if the number (and types) of atoms on each side of the equation don't perfectly match.Don’t forget to multiply through by a coefficient or subscript if one is present.
For example, H2SO4 + Fe ---> Fe2(SO4)3 + H2On the reactant (left) side of the equation there are 2 H, 1 S, 4 O, and 1 Fe.On the product (right) side of the equation there are 2H, 3 S, 12 O, and 2 Fe.
Answer:
wait did you tell up the answer?
Explanation:
Answer:
A buffer solution is prepared by adding 13.74 g of sodium acetate (NaC2H3O2) and 15.36 g of acetic acid to enough water to make 500 mL of solution.
Calculate the pH of this buffer.
Explanation:
The pH of a buffer solution can be calculated by using the Henderson-Hesselbalch equation:
![pH=pKa+log\frac{[salt]}{[acid]}](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%5Cfrac%7B%5Bsalt%5D%7D%7B%5Bacid%5D%7D)
The pH of the given buffer solution can be calculated as shown below:
Answer:
22.77 g.
he limiting reactant is O₂, and the excess reactant is Mg.
Explanation:
- From the balanced reaction:
<em>Mg + 1/2O₂ → MgO,</em>
1.0 mole of Mg reacts with 0.5 mole of oxygen to produce 1.0 mole of MgO.
- We need to calculate the no. of moles of (16.3 g) of Mg and (4.52 g) of oxygen:
no. of moles of Mg = mass/molar mass = (16.3 g)/(24.3 g/mol) = 0.6708 mol.
no. of moles of O₂ = mass/molar mass = (4.52 g)/(16.0 g/mol) = 0.2825 mol.
So. 0.565 mol of Mg reacts completely with (0.2825 mol) of O₂.
<em>∴ The limiting reactant is O₂, and the excess reactant is Mg (0.6708 - 0.565 = 0.1058 mol).</em>
<u><em>Using cross multiplication:</em></u>
1.0 mole of Mg produce → 1.0 mol of MgO.
∴ 0.565 mol of Mg produce → <em>0.565 mol of MgO.</em>
<em>∴ The amount of MgO produced = no. of moles x molar mass </em>= (0.565 mol)(40.3 g/mol) = <em>22.77 g.</em>