Answer:
The forward reaction is exothermic.
Explanation:
- Le Châtelier's principle states that when there is an dynamic equilibrium, and this equilibrium is disturbed by an external factor, the equilibrium will be shifted in the direction that can cancel the effect of the external factor to reattain the equilibrium.
- When the mixture turned darker brown, this means that the reaction is shifted towards the left direction (reactants side).
- The temperature is increased and the reaction shifted to the reverse direction, this means that the forward direction is exothermic.
- Exothermic reaction releases heat and when increasing the temperature, the reaction will be shifted to the reverse direction to suppress the effect of increasing the temperature.
- <em>So the right choice is: The forward reaction is exothermic. </em>
<em></em>
Answer:
800 degrees C g, I found this answer by using the formula to find how much energy was need to melt the ice. First you figure out the temperature change of ur ice (starting temp and ur final temp), and then you times that with the mass of the water.
Answer:
Explanation:
Dalton's atomic theory proposed that all matter was composed of atoms, indivisible and indestructible building blocks. While all atoms of an element were identical, different elements had atoms of differing size and mass.
In 1897, J.J. Thomson discovered the electron by experimenting with a Crookes, or cathode ray, tube. He demonstrated that cathode rays were negatively charged. In addition, he also studied positively charged particles in neon gas.
Rutherford overturned Thomson's model in 1911 with his well-known gold foil experiment in which he demonstrated that the atom has a tiny and heavy nucleus. Rutherford designed an experiment to use the alpha particles emitted by a radioactive element as probes to the unseen world of atomic structure.
The Bohr model shows the atom as a small, positively charged nucleus surrounded by orbiting electrons. Bohr was the first to discover that electrons travel in separate orbits around the nucleus and that the number of electrons in the outer orbit determines the properties of an element.
Answer:
= 9.28 g CO₂
Explanation:
First write a balanced equation:
CH₄ + 2O₂ -> 2H₂O + CO₂
Convert the information to moles
7.50g CH₄ = 0.46875 mol CH₄
13.5g O₂ = 0.421875 mol O₂
Theoretical molar ratio CH₄:O₂ -> 1:2
Actual ratio is 0.46875 : 0.421875 ≈ 1:1
If all CH₄ is used up, there would need to be more O₂
So O₂ is the limiting reactant and we use this in our equation
Use molar ratio to find moles of CO₂
0.421875 mol O₂ * 1 mol CO₂/2 mol O₂=0.2109375 mol CO₂
Then convert to grams
0.2109375 mol CO₂ = 9.28114 g CO₂
round to 3 sig figs
= 9.28 g CO₂