Answer: There were less flies stuck to the model of the zebra with stripes.
Answer:
See below for answer
Explanation:
<u>A. 200 mOsM NaCl</u>
This solution is hypotonic to the red blood cell (RBC) with penetrating solute. The RBCs will swell up and burst because the water will move into the cells.
<u>B. 400 mOsM urea</u>
This solution is hypertonic to the RBCs with non-penetrating solutes. Water will leave the cells via osmosis and the cells will shrink and appear shriveled.
<u>C. 100 mOsM urea plus 200 mOsM NaCl</u>
This time both penetrating and non-penetrating solute is present. The solution is isotonic to the RBCs and although there will be movement of water between the cells and the solution, there will be no overall change in the concentration of water for each and no change in appearance of the cells.
<u>D. 300 mOsM urea</u>
The RBCs will not lyse nor shrivel as again the solution is isotonic to the RBCs.
Natural selection is the process by which individuals with characteristics that are advantageous for reproduction in a specific environment leave more offspring in the next generation, thereby increasing the proportion of their genes in the population gene pool over time. Natural selection is the principal mechanism of evolutionary change, and is the most important idea in all biology. Natural selection, the unifying concept of life, was first proposed by Charles Darwin, and represents his single greatest contribution to science.
Natural selection occurs in any reproducing population faced with a changing or variable environment. The environment includes not only physical factors such as climate or terrain, but also living factors such as predators, prey, and other members of a population.
Mechanism of Natural Selection
The mechanism of natural selection depends on several phenomena:
• Heredity: Offspring inherit their traits from their parents, in the form of genes.
• Heritable individual variation: Members of a population have slight differences among them, whether in height, eyesight acuity, beak shape, rate of egg production, or other traits that may affect survival and reproduction. If a trait has a genetic basis, it can be passed on to offspring.
• Overproduction of offspring: In any given generation, populations tend to create more progeny than can survive to reproductive age.
• Competition for resources: Because of excess population, individuals must compete for food, nesting sites, mates, or other resources that affect their ability to successfully reproduce.
Given all these factors, natural selection unavoidably occurs. Those members of a population that reproduce the most will, by definition, leave more offspring for the next generation. These offspring inherit their parents' traits, and are therefore also likely to succeed in competition for resources (assuming the environment continues to pose the same challenges as those faced by parents). Over several generations, the proportion of offspring in a population that are descended from the successful ancestor

Uloborid spider eggs and spiderlings. In any given generation, populations tend to create more offspring than can survive to reproductive age.
increases, and traits that made the ancestor successful therefore also increase in frequency. Natural selection leads to adaptation, in which an organism's traits conform to the environment's conditions for existence.