55/20=2 as qutiont and 15 as remainder
2X84=168
15X5=75
answer=243
Answer:
Step-by-step explanation:
The complete question is
Water flows into a tank according to the rate F(t)= (t+6)/(1+t), and at the same time empties out at the rate E(t)= (ln(t+2))/(t+1), with both F(t) and E(t) measured in gallons per minute. How much water, to the nearest galllon, is in the tank at time t=10 minutes.
Let C(t) be the amount of water in the tank at time t. We now that the rate of change of the tank is given by
![\frac{dC}{dt}=[\tex]rate at which water flows in- rate at which water flows out. Then [tex]\frac{dC}{dt}=\frac{t+6}{t+1}-\frac{\ln(t+2)}{(t+1)}[\tex]so, the desired expression is obtained by integrating with respect to t. This leads us to [tex]C(t) = \int \frac{t+1}{t+1}+ \frac{5}{t+1} - \frac{\ln(t+2)}{(t+1)} dt=t+ 5 \ln (|t+1|)-\int \frac{\ln(t+2)}{(t+1)} dt +C](https://tex.z-dn.net/?f=%5Cfrac%7BdC%7D%7Bdt%7D%3D%5B%5Ctex%5Drate%20at%20which%20water%20flows%20in-%20rate%20at%20which%20water%20flows%20out.%20%3C%2Fp%3E%3Cp%3EThen%20%3C%2Fp%3E%3Cp%3E%5Btex%5D%5Cfrac%7BdC%7D%7Bdt%7D%3D%5Cfrac%7Bt%2B6%7D%7Bt%2B1%7D-%5Cfrac%7B%5Cln%28t%2B2%29%7D%7B%28t%2B1%29%7D%5B%5Ctex%5D%3C%2Fp%3E%3Cp%3Eso%2C%20the%20desired%20expression%20is%20obtained%20by%20integrating%20with%20respect%20to%20t.%20%3C%2Fp%3E%3Cp%3EThis%20leads%20us%20to%20%3C%2Fp%3E%3Cp%3E%5Btex%5DC%28t%29%20%20%3D%20%5Cint%20%5Cfrac%7Bt%2B1%7D%7Bt%2B1%7D%2B%20%5Cfrac%7B5%7D%7Bt%2B1%7D%20-%20%5Cfrac%7B%5Cln%28t%2B2%29%7D%7B%28t%2B1%29%7D%20dt%3C%2Fp%3E%3Cp%3E%3Dt%2B%205%20%5Cln%20%28%7Ct%2B1%7C%29-%5Cint%20%5Cfrac%7B%5Cln%28t%2B2%29%7D%7B%28t%2B1%29%7D%20dt%20%2BC)
Unfortunately, the integral
cannot be expressed using fundamental functions. So, the problem cannot have an specific function (if you are willing to know the complete answer, the integral of this function uses the polylogarithm function with n=2).
Since you want the exact amount of water at time, you need to give C a value, that is, you need to know an initial condition for the problem. This means, you need to know the amount of water in the tank at time 0
89 would be the correct answer
The total mass, in kilograms, of the nails the carpenter bought is 3.9 kilogram
<h3><u>Solution:</u></h3>
Given that carpenter bought 750 nails
Each nail has a mass of
kilogram
To find: total mass, in kilograms of the nails bought
The total mass of the nails bought can be found out by multiplying number of nails bought by mass of each nail
Number of nails bought = 750
Mass of each nail =
kilogram
total mass of the nails bought = number of nails bought x mass of each nail


Thus the total mass of nails bought is 3.9 kilogram
Answer:4.08 ft a year or 1 and 5/8 feet a year (approx)
Step-by-step explanation:
It's 12.5 feet the first year
51 feet 5 years later
If you do the math and divide 51 by 12.5, you get 4.08 which is around 1 and 5/8 ft
12.5x4.08 is 51 feet.
So the tree grows approximately 1 and 5/8 feet a year