1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
neonofarm [45]
3 years ago
11

Give an example of a 2x2 matrix without any real eigenvalues:___________

Mathematics
1 answer:
9966 [12]3 years ago
3 0

Answer:

Step-by-step explanation:

An eigenvalue of n × n is a function of a scalar \lambda  considering that there is a solution (i.e. nontrivial) to an eigenvector x of Ax =  

Suppose the matrix A = \left[\begin{array}{cc}-1&-1\\2&1\\ \end{array}\right]

Thus, the equation of the determinant (A - \lambda1) = 0

This implies that:

\left[\begin{array}{cc}-1-\lambda &-1\\2&1- \lambda\\ \end{array}\right] =0

-(1 - \lambda^2 ) + 2 = 0

-1 + \lambda ^2 + 2= 0

\lambda^2 +1 =0

Hence, the eigenvalues of the equation are \mathtt{\lambda = i , -i}

Also, the eigenvalues can be said to be complex numbers.

You might be interested in
How many decimals can 2/5 represent?
Alexus [3.1K]
2/5 in decimal form is 0.4.

Hope this helps!
5 0
3 years ago
Each candle uses 10 ounces of wax and 1 ounces of scent. Explain in complete sentences how I can determine the number of candles
Sphinxa [80]

You would multiply 50x16 being 16 ounces= 1 pound and than divide that by 10

4 0
3 years ago
Someone help me with this still im stock on it plz
pav-90 [236]

Answer:

a>4 or a < 8

Step-by-step explanation:

We can start with the inequality on the left

-a + 2(4+3a) > 28

expand using the distributive property

-a + 8 + 6a > 28

5a + 8 > 28

subtract 8 from both sides to isolate the variable and its coefficient

5a > 20

divide both sides by 5 to isolate a

a > 4

moving on to the inequality on the right

2a - (3a+4) > -12

treat the minus sign as a -1

2a + (-1)(3a+4) > - 12

expand

2a - 3a - 4 > - 12

-a - 4 > -12

add 4 to both sides to isolate a and its coefficient

-a > - 8

multiply both sides by -1 but change the sign because we are multiplying by a negative number

a < 8

5 0
2 years ago
A photoconductor film is manufactured at a nominal thickness of 25 mils. The product engineer wishes to increase the mean speed
AURORKA [14]

Answer:

A 98% confidence interval estimate for the difference in mean speed of the films is [-0.042, 0.222].

Step-by-step explanation:

We are given that Eight samples of each film thickness are manufactured in a pilot production process, and the film speed (in microjoules per square inch) is measured.

For the 25-mil film, the sample data result is: Mean Standard deviation 1.15 0.11 and For the 20-mil film the data yield: Mean Standard deviation 1.06 0.09.

Firstly, the pivotal quantity for finding the confidence interval for the difference in population mean is given by;

                     P.Q.  =  \frac{(\bar X_1 -\bar X_2)-(\mu_1- \mu_2)}{s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }  ~  t__n_1_+_n_2_-_2

where, \bar X_1 = sample mean speed for the 25-mil film = 1.15

\bar X_1 = sample mean speed for the 20-mil film = 1.06

s_1 = sample standard deviation for the 25-mil film = 0.11

s_2 = sample standard deviation for the 20-mil film = 0.09

n_1 = sample of 25-mil film = 8

n_2 = sample of 20-mil film = 8

\mu_1 = population mean speed for the 25-mil film

\mu_2 = population mean speed for the 20-mil film

Also,  s_p =\sqrt{\frac{(n_1-1)s_1^{2}+ (n_2-1)s_2^{2}}{n_1+n_2-2} } = \sqrt{\frac{(8-1)\times 0.11^{2}+ (8-1)\times 0.09^{2}}{8+8-2} } = 0.1005

<em>Here for constructing a 98% confidence interval we have used a Two-sample t-test statistics because we don't know about population standard deviations.</em>

<u>So, 98% confidence interval for the difference in population means, (</u>\mu_1-\mu_2<u>) is;</u>

P(-2.624 < t_1_4 < 2.624) = 0.98  {As the critical value of t at 14 degrees of

                                             freedom are -2.624 & 2.624 with P = 1%}  

P(-2.624 < \frac{(\bar X_1 -\bar X_2)-(\mu_1- \mu_2)}{s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } } < 2.624) = 0.98

P( -2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } } < 2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } } <  ) = 0.98

P( (\bar X_1-\bar X_2)-2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } } < (\mu_1-\mu_2) < (\bar X_1-\bar X_2)+2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } } ) = 0.98

<u>98% confidence interval for</u> (\mu_1-\mu_2) = [ (\bar X_1-\bar X_2)-2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } } , (\bar X_1-\bar X_2)+2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } } ]

= [ (1.15-1.06)-2.624 \times {0.1005 \times \sqrt{\frac{1}{8}+\frac{1}{8} } } , (1.15-1.06)+2.624 \times {0.1005 \times \sqrt{\frac{1}{8}+\frac{1}{8} } } ]

 = [-0.042, 0.222]

Therefore, a 98% confidence interval estimate for the difference in mean speed of the films is [-0.042, 0.222].

Since the above interval contains 0; this means that decreasing the thickness of the film doesn't increase the speed of the film.

7 0
2 years ago
Would the scale factor 4.2 enlarge,reduce,or preserve
Juli2301 [7.4K]

Hey there! I'm happy to help!

Let's look at what scale factors would be able to enlarge, reduce, and preserve first. We will use the point (1,1) as an example.

ENLARGE

When we talk about scale factors, both of our numbers of the ordered pair will be multiplied by that number. To make it bigger, we will multiply it by anything larger than a one, we could have a scale factor such as 2, 100, 579395. etc.!

Dilation of 2

(1,1)⇒(2,2)

REDUCE

To reduce our ordered pair, our scale factor must be a number greater than zero but less than one because it cannot switch quadrants, which is what would happen if we used negative numbers. Our reduced number must be greater than zero. We can use 1/2, 1/4, 1/100, 0.67 etc.

Dilation of 1/2

(1,1)⇒(0.5,0.5)

PRESERVE

What would we multiply an ordered pair by to make it stay the same? One of course! This is the only number that will keep it the same!

Dilation of 1

(1,1)⇒(1,1)

Now, let's think of any scale factor as X and see what rules it has to follow to be enlarging, reducing, or preserving.

ENLARGING SCALE FACTOR: X>1

REDUCING SCALE FACTOR: 0<X<1

PRESERVING SCALE FACTOR: X=1

So, where does 4.2 fall? Well, as you can see, 4.2 is greater than one, so this scale factor would make our point larger.

Therefore, 4.2 would enlarge.

I hope that this helps! Have a wonderful day!

8 0
3 years ago
Other questions:
  • what property is illustrated by the statement 1×y=y? A. MULTIPLICATIVE IDENTY B. COMMUTATIVE C. ASSOCIATIVE PROPERTY OF MULTIPIL
    11·2 answers
  • Which value is needed to create a perfect square trinomial from the expression x2 + 8x + _____?
    11·1 answer
  • Which expression represents the product of 3 and (5/4 n + 1.8)
    11·1 answer
  • Dante is solving the system of equations below.
    14·2 answers
  • Six friends go out to eat and decided to split the bill evenly the bill comes to 61 dollars and 56 cents (61.56) how much does e
    5·2 answers
  • The diameter of a penny is 19.05 mm and the thickness is 1.52 mm what is the approximate volume of the role of Penny to the near
    15·1 answer
  • Convert the given amount to the given unit.<br> 9.5 lb; <br> 9.5 lb =<br> ounces
    12·2 answers
  • How do I get my answer to this question
    7·2 answers
  • Sheri's freezer is 2 feet wide, 6 feet long, and 2 feet deep. What is the volume of her freezer?
    11·2 answers
  • A shipment of 288 reams of paper was delivered. Each of the 30 classrooms recieved an equal share of equipment paper. Any extra
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!