From the diagram above,
XZ = 10 in and OX = 10 in
we are to find length of OY
XZ is a chord and line OY divides the chord into equal length
Hence, ZY=YX= 5 in
Now we solve the traingle OXY
To find OY we solve using pythagoras theorem

applying values from the triangle above
![\begin{gathered} OX^2=XY^2+OY^2 \\ 10^2=5^2+OY^2 \\ 100=25+OY^2 \\ OY^2\text{ = 100 -25} \\ OY^2\text{ = 75} \\ OY\text{ = }\sqrt[]{75} \\ OY\text{ = }\sqrt[]{25\text{ }\times\text{ 3}} \\ OY\text{ = 5}\sqrt[]{3\text{ }}in \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20OX%5E2%3DXY%5E2%2BOY%5E2%20%5C%5C%2010%5E2%3D5%5E2%2BOY%5E2%20%5C%5C%20100%3D25%2BOY%5E2%20%5C%5C%20OY%5E2%5Ctext%7B%20%3D%20100%20-25%7D%20%5C%5C%20OY%5E2%5Ctext%7B%20%3D%2075%7D%20%5C%5C%20OY%5Ctext%7B%20%3D%20%7D%5Csqrt%5B%5D%7B75%7D%20%5C%5C%20OY%5Ctext%7B%20%3D%20%7D%5Csqrt%5B%5D%7B25%5Ctext%7B%20%7D%5Ctimes%5Ctext%7B%203%7D%7D%20%5C%5C%20OY%5Ctext%7B%20%3D%205%7D%5Csqrt%5B%5D%7B3%5Ctext%7B%20%7D%7Din%20%5Cend%7Bgathered%7D)
Therefore,
Length of OY =
Answer:
<em>m</em> = undefined
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Coordinates (x, y)
- Slope Formula:

Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
Point (6, 8)
Point (6, 6)
<u>Step 2: Find slope </u><em><u>m</u></em>
Simply plug in the 2 coordinates into the slope formula to find slope <em>m</em>
- Substitute in points [Slope Formula]:

- [Fraction] Subtract:

- Simplify: <em>m</em> = undefined
∴ We have a vertical line at x = 6.
Answer:
C. y = 1/2x
Step-by-step explanation:
We can check to see which of the equations passes through (2,1) by substituting the point's x and y values into the options, then checking to see if the result is a true statement.
Let's try this with option C,
. To substitute the x and y values of (2,1) into the equation, substitute 2 for
and 1 for
. Then, solve:
1 does equal 1, so the result is a true statement. Option C is the answer.
The answer is A : abyssopelagic