Answer:
2 51 × 10^-5mol/L
Explanation:
The concentration of hydrogen ions can be calculated using the formula below :
pH = -log [H+]
pH = 4.6
[H+] = ?
[H+] = Antilog (-4.6)
[H+] = 2 51 × 10^-5mol/L
Answer:
- <u>Yes, it is 14. g of compound X in 100 ml of solution.</u>
Explanation:
The relevant fact here is:
- the whole amount of solute disolved at 21°C is the same amount of precipitate after washing and drying the remaining liquid solution: the amount of solute before cooling the solution to 21°C is not needed, since it is soluble at 37°C but not soluble at 21°C.
That means that the precipitate that was thrown away, before evaporating the remaining liquid solution under vacuum, does not count; you must only use the amount of solute that was dissolved after cooling the solution to 21°C.
Then, the amount of solute dissolved in the 600 ml solution at 21°C is the weighed precipitate: 0.084 kg = 84 g.
With that, the solubility can be calculated from the followiing proportion:
- 84. g solute / 600 ml solution = y / 100 ml solution
⇒ y = 84. g solute × 100 ml solution / 600 ml solution = 14. g.
The correct number of significant figures is 2, since the mass 0.084 kg contains two significant figures.
<u>The answer is 14. g of solute per 100 ml of solution.</u>
Answer:
The correct answer is the first option. No, the structures above cannot undergo a Fischer esterification reaction to form an ester.
Explanation:
The reaction that will take place can be found in the attached file. The reaction does not require any catalyst and it cannot undergo a Fischer esterification reaction to form an ester.
Aluminum is more reactive than iron
but it forms Al-oxide, that form a thin layer on the surface of Al, and protect Al from reaction with water.
Answer: Very unreactive aluminum oxide forms a thin layer on aluminum.
Answer:
metal atoms lose electrons to form positive ions (cations ) non-metal atoms gain electrons to form negative ions (anions )
i agree with this answer from the person above me: Augustlonley
Explanation:
*throws leaves in his face* Hey you wake up!!