Answer : The correct answer is Option D.
Explanation:
Ores are defined as natural occurring substance from which metals and another mineral are extracted.
Bauxite is primary ore of an aluminium metal. it doesn't have definite or specific chemical composition. This is because it contains mixture of hydrous aluminum oxide
, aluminum hydroxides
, insoluble materials like hematite, quartz ,geothite ,magnetite etc.
From the given options the most appropriate statement which is correct about the bauxite is 'It does not have a definite chemical composition'.
Hence, the correct option Is (D).
Solids always have definite shape and definite volume because their particles are packed together. Liquids have a definite volume but not definite shape, because their particles still kinda tight but able to move around, and gases don’t have a definite shape nor volume, because their particles are crazy and go everywhere
Answer:
![\frac{[magenta\ phenolphthalein]}{[colorless\ phenolphthalein]}=31.62](https://tex.z-dn.net/?f=%5Cfrac%7B%5Bmagenta%5C%20phenolphthalein%5D%7D%7B%5Bcolorless%5C%20phenolphthalein%5D%7D%3D31.62)
Explanation:
Considering the Henderson- Hasselbalch equation for the calculation of the pH of the buffer solution as:
Where Ka is the dissociation constant of the acid.
pKa of phenolphthalein = 9.40
pH = 10.9
So,
![\frac{[magenta\ phenolphthalein]}{[colorless\ phenolphthalein]}=31.62](https://tex.z-dn.net/?f=%5Cfrac%7B%5Bmagenta%5C%20phenolphthalein%5D%7D%7B%5Bcolorless%5C%20phenolphthalein%5D%7D%3D31.62)
Energy from the sun that is neither reflected nor absorbed by the atmosphere passes through the atmosphere to the surface. The ozone layer absorbes most of the ultraviolet radiation, water vapor, and carbon dioxide absorbs infared radiation, clouds, dust, and other gases also absorb energy.
464 g radioisotope was present when the sample was put in storage
<h3>Further explanation</h3>
Given
Sample waste of Co-60 = 14.5 g
26.5 years in storage
Required
Initial sample
Solution
General formulas used in decay:

t = duration of decay
t 1/2 = half-life
N₀ = the number of initial radioactive atoms
Nt = the number of radioactive atoms left after decaying during T time
Half-life of Co-60 = 5.3 years
Input the value :
