It is true
I’ve done this before
The following chemical reaction will occur:
Br₂ (l) + 2 NaI (s) → 2 NaBr (s) + I₂ (s)
Explanation:
Because the bromide (Br₂) have a higher reactivity than iodide (I₂) it is able the remove the iodide from its salts. So the bromide will react with sodium iodine (NaI) to produce sodium bromide (NaBr) and iodine.
The chemical reaction is:
Br₂ (l) + 2 NaI (s) → 2 NaBr (s) + I₂ (s)
where:
(l) - liquid
(s) - solid
Learn more about:
balancing chemical equations
brainly.com/question/13971935
#learnwithBrainly
<u>Answer:</u> The equilibrium constant for this reaction is 
<u>Explanation:</u>
The equation used to calculate standard Gibbs free change is of a reaction is:
![\Delta G^o_{rxn}=\sum [n\times \Delta G^o_{(product)}]-\sum [n\times \Delta G^o_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20G%5Eo_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20G%5Eo_%7B%28reactant%29%7D%5D)
For the given chemical reaction:

The equation for the standard Gibbs free change of the above reaction is:
![\Delta G^o_{rxn}=[(1\times \Delta G^o_{(Ni(CO)_4(g))})]-[(1\times \Delta G^o_{(Ni(s))})+(4\times \Delta G^o_{(CO(g))})]](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20G%5Eo_%7B%28Ni%28CO%29_4%28g%29%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20G%5Eo_%7B%28Ni%28s%29%29%7D%29%2B%284%5Ctimes%20%5CDelta%20G%5Eo_%7B%28CO%28g%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta G^o_{rxn}=[(1\times (-587.4))]-[(1\times (0))+(4\times (-137.3))]\\\\\Delta G^o_{rxn}=-38.2kJ/mol](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%28-587.4%29%29%5D-%5B%281%5Ctimes%20%280%29%29%2B%284%5Ctimes%20%28-137.3%29%29%5D%5C%5C%5C%5C%5CDelta%20G%5Eo_%7Brxn%7D%3D-38.2kJ%2Fmol)
To calculate the equilibrium constant (at 58°C) for given value of Gibbs free energy, we use the relation:

where,
= Standard Gibbs free energy = -38.2 kJ/mol = -38200 J/mol (Conversion factor: 1 kJ = 1000 J )
R = Gas constant = 8.314 J/K mol
T = temperature = ![58^oC=[273+58]K=331K](https://tex.z-dn.net/?f=58%5EoC%3D%5B273%2B58%5DK%3D331K)
= equilibrium constant at 58°C = ?
Putting values in above equation, we get:

Hence, the equilibrium constant for this reaction is 
Answer: first option, the work output of the hairdryer will be less than the work input.
Explanation:
1) The work output measured in watts is the power of hair dryer measured in joules per second.
2) The hair dryer converts electrical energy from the wall outlet to mechanical and thermal energy: hot wind.
3) Nevertheless, you can never expect a 100% efficiency of the machines: due to friction, some energy is converted into useless energy.
So, efiiviency = power output / power input< 1 ⇒
power output = work output / time
input power = work input / time
⇒ work output / work input < 1
⇒ work output < work input.
Which is the first option: the work output of the hairdryer will be less than the work input
A gas because if you freeze water, it turns into a shape as where gas can’t be frozen