<span>y=2(1/2)^x
</span>
x = 0; <span>y=2(1/2)^0 = 2(1) = 2
x = 1; </span><span>y=2(1/2)^1 = 2(1/2) = 1
answer is the last one.</span>
Answer:
They are compatible
Step-by-step explanation:
The first thing is to say that an "ace" and that it is a "coarse"
"ace" is card number 1. Group A
"coarse" is a type of the deck, found from number 1 to card 13. Group B
Thus:
Calculate A U B:
1 to 13 + 1 of the other types of cards in the deck.
At intersection B:
1 of "coarse"
Therefore, if group A is compatible with group B
Answer:
Option B. minimum is correct for the first blank
Option C. 6 is correct for second blank.
Step-by-step explanation:
In order to find the maxima or minima of a function, we have to take the first derivative and then put it equal to zero to find the critical values.
Given function is:

Taking first derivative

Now the first derivative has to be put equal to zero to find the critical value

The function has only one critical value which is 5.
Taking 2nd derivative


As the value of 2nd derivative is positive for the critical value 5, this means that the function has a minimum value at x = 5
The value can be found out by putting x=5 in the function

Hence,
<u>The function y = x 2 - 10x + 31 has a minimum value of 6</u>
Hence,
Option B. minimum is correct for the first blank
Option C. 6 is correct for second blank.
Answer:
What is P(A), the probability that the first student is a girl? (3/4)
What is P(A), the probability that the first student is a girl? (3/4)What is P(B), the probability that the second student is a girl? (3/4)
What is P(A), the probability that the first student is a girl? (3/4)What is P(B), the probability that the second student is a girl? (3/4)What is P(A and B), the probability that the first student is a girl and the second student is a girl? (1/2)
The probability that the first student is a girl is (3/4), likewise for the 2nd 3rd and 4th it's still (3/4). The order you pick them doesn't matter.
However, once you're looking at P(A and B) then you're fixing the first position and saying if the first student is a girl what's the probability of the second student being a girl.
In 10 months Lisa will have paid the same amount as Kelly, but in month 11 she will have paid more.