Answer:
A chemical bond is a lasting attraction between atoms, ions or molecules that enables the formation of chemical compounds. The bond may result from the electrostatic force of attraction between oppositely charged ions as in ionic bonds or through the sharing of electrons as in covalent bonds.
Explanation:
You have to put energy into a molecule to break its chemical bonds. The amount needed is called the bond energy. After all, molecules don't spontaneously break
Answer:
306.6g/mol
Explanation:
To calculate molecular weight you need to know how many grams ou have in a determined amount of moles of substance. As you have the mass of the sample (1.42g), you need to find how many moles are, as follows:
The reaction of the acid HX with the base YOH is:
HX + YOH → H₂O + YX
<em>1 mole of acid reacts per mole of base.</em>
<em />
In a titration, the solution turned pink when moles base = moles acid.
Moles of base that the student added (Using the volume and molarity of the solution) are:
32.48mL = 0.03248L ₓ (0.1426 moles base / L) = 0.004632 moles of base
As the titration is in equivalence point, there are 0.004632 moles of the acid
Molecular weight (Ratio between grams of sample and its moles) is:
1.42g / 0.004632 moles =
<h3>306.6g/mol</h3>
Answer:
Here's what I get
Explanation:
I think this may be the equation you intended to write:
C₃H₅(OH)₃ + 3HCl ⟶ C₃H₅Cl₃ + 3H₂O
The mole ratios are the ratios of the coefficients in the balanced equation.
Here are some of the possible molar ratios.
- C₃H₅(OH)₃:HCl = 1:3
- C₃H₅(OH)₃:C₃H₅Cl₃ = 1:1
- C₃H₅(OH)₃:H₂O = 1:3
- HCl:C₃H₅Cl₃ = 3:1
- HCl:H₂O = 3:3
- C₃H₅Cl₃:H₂O = 1:3