Considering that each student has only one birthday, each input will be related to only one output, hence this relation is a function.
<h3>When does a relation represent a function?</h3>
A relation represents a function when each value of the input is mapped to only one value of the output.
For this problem, we have that:
- The input is the student's name.
- The output is the student's birthday.
Each student has only one birthday, hence each input will be related to only one output, hence this relation is a function.
More can be learned about relations and functions at brainly.com/question/12463448
#SPJ1
Answer:
When we have a function f(x), the domain of the function is the set of all the inputs that "work" (Not only in a mathematical way, the context is also important) with the function f(x)
In this case, we have a function M(p) = $2*p
This function represents the amount of money collected depending on the number of people who ride on the ferris whell.
Then p can be only a whole number (we can not have 1.5 people, only whole numbers of people).
And we also know that the maximum capacity of the ferris is 64 people.
Then:
p ≤ 64
And we also should add the restriction:
0 ≤ p ≤ 64
(Because p can't be smaller than zero)
Such that p should also be an integer, then, the domain is:
D: p ∈ Z, p ∈ {0, 1, 2, ..., 64}
Sample Response: The base area , radius, and diameter can be
determined when given the volume and height of a cone. Substitute the
values for the corresponding variables into the formula, and then solve
by simplifying and undoing operations to isolate the variable. To find
the diameter, double the radius.
G in bass clef is the answer D!