Complete question:
The endplate potential (EPP) at the frog neuromuscular junction occurs because ACh simultaneously increases the conductance of the postsynaptic membrane to Na and K
Answer:
TRUE
Explanation:
The Acetylcholine neurotransmitter is released from the presynaptic cell by the process of exocytosis.
Once the molecule is in the intercellular space, it moves forward the postsynaptic membrane to join its receptor in the motor plate.
Once the joining has occurred, the receptor acquires a channel shape allowing the ion transference that will make possible the modification of the action potential. Ions traffic will consist of the pass of sodium and calcium to the interior of the cell and potassium to the exterior. Quantitatively, the interchange Na-K is the most significant.
K+ follows a concentration gradient, while Na+ follows an electrochemical gradient. The interchange results in an increase of positive charges in the interior of the muscular cell.
Whenever there is a sufficient number of Acetylcholine receptors are active, the depolarization threshold of the motor endplate is exceeded. This activates an action potential that extends to the rest of the muscle membrane.
A cell membrane pump helps human cells to maintain a relatively constant sodium and potassium concentration.
<u>Option: A</u>
<u>Explanation:</u>
Sodium potassium pump is a plasma membrane protein that utilizes energy ATP — Triphosphate Adenosine turning into ADP — Adenosine Diphosphate to deliver intracellular and extracellular sodium (NA+) and potassium (K+) ions sequentially. The purpose of this entire mechanism is to preserve cell equilibrium.
The extracellular medium has a greater concentration of Na while the K concentration of the intracellular fluid is lower. Proteins trap sodium ions in the cytoplasm and pump them out from the cells to preserve cell stability while preserving concentrations. Within the cells proteins inject potassium ions into the cell.
Answer:
vestigial structures are considered evidence because scientists believe they are structures that were once used by a species ancestors but are not longer needed. these structures do not impair the organism in any way, so there is no need for evolution to get rid of them. for example, the human appendix is considered a vestigial structure.
Explanation:
:D
Physical chemists study matter and energy, and there is chemical reactions in your body, and all living things have elements, like carbon.
I would say D