Answer:
22 pairs of autosomes, 1 pair of sex chromosomes, I notice that the X and Y chromosomes are sex chromosomes and that they are different in length and size., The sex of this organism is male, as the genotype XY can only mean a male gender; female gender is denoted by the genotype XX., You didn't put in Karyotype A., The special circumstance is with group 21 of chromosomes. There are 3 instead of 2 in that group., This circumstance results in a condition known as trisomy 21, or Down Syndrome. Down syndrome causes a distinct facial appearance, intellectual disability, developmental delays, and may be associated with thyroid or heart disease.
, Name the karyotype "Down Syndrome Karyotype?" (I'm not sure on the last one)
Answer:
The correct answer is - decreased population size at all levels.
Explanation:
A decrease in the productivity of producers of an ecosystem will lead to a decrease in all other organisms of the ecosystem including top-level consumers to the bottom-level producers due to the fact that producers provide energy and food to primary consumers.
It is because they are the only organisms that convert the sunlight to usable energy and food that transfer from one trophic level to other, so if the population of producers or their productivity will decrease then there will be decreased population size at all levels.
Answer:
On a graph, points are grouped closely together.
I only put one answer because the choices repeat.
Answer/Explanation:
The DNA in all living organisms is made up of 4 bases, adenine, thymine, guanine, cytosine. The RNA replaces thymine with uracil, making 5 types of nucleotide. The number of nucleotide pairs in a genome can range from half a million up to 100,000 million - meaning there are an exponential number of combinations of these 4 bases.
Imagine an organism exists that has only 2 nucleotides (<u><em>this is over 200,000x smaller than even the smallest bacterial genome</em></u>). If we allow any nucleotide at each of the 2 positions, then we have 4x4 (4²) or 16 possible combinations of sequences. For a nucleotide length of 4, the total number of possible combinations are 4⁴ or 256.
Since we are dealing with many millions of nucleotides, there are essentially infinite combinations of nucleotides, giving rise to the variation that produces over 20 million organisms on the planet.