Function would be f(x) = 5x+85
here, x= 15
5(15)+85 = 75+85 = $160
Complete Question
The Brown's Ferry incident of 1975 focused national attention on the ever-present danger of fires breaking out in nuclear power plants. The Nuclear Regulatory Commission has estimated that with present technology there will be on average, one fire for every 10 years for a reactor. Suppose that a certain state has two reactors on line in 2020 and they behave independently of one another. Assuming the incident of fires for individual reactors can be described by a Poisson distribution, what is the probability that by 2030 at least two fires will have occurred at these reactors?
Answer:
The value is 
Step-by-step explanation:
From the question we are told that
The rate at which fire breaks out every 10 years is
Generally the probability distribution function for Poisson distribution is mathematically represented as

Here x represent the number of state which is 2 i.e 
Generally the probability that by 2030 at least two fires will have occurred at these reactors is mathematically represented as

=> ![P(x_1 + x_2 \ge 2 ) = 1 - [P(x_1 + x_2 = 0 ) + P( x_1 + x_2 = 1 )]](https://tex.z-dn.net/?f=P%28x_1%20%2B%20x_2%20%5Cge%202%20%29%20%3D%20%201%20-%20%5BP%28x_1%20%2B%20x_2%20%3D%200%20%29%20%2B%20P%28%20x_1%20%2B%20x_2%20%3D%201%20%29%5D)
=> ![P(x_1 + x_2 \ge 2 ) = 1 - [ P(x_1 = 0 , x_2 = 0 ) + P( x_1 = 0 , x_2 = 1 ) + P(x_1 , x_2 = 0)]](https://tex.z-dn.net/?f=P%28x_1%20%2B%20x_2%20%5Cge%202%20%29%20%3D%20%201%20-%20%5B%20P%28x_1%20%20%3D%200%20%2C%20%20x_2%20%3D%200%20%29%20%2B%20P%28%20x_1%20%3D%200%20%2C%20x_2%20%3D%201%20%29%20%2B%20P%28x_1%20%2C%20x_2%20%3D%200%29%5D)
=> 
=> ![P(x_1 + x_2 \ge 2 ) = 1 - \{ [ \frac{1^0}{ 0! } * e^{-1}] * [[ \frac{1^0}{ 0! } * e^{-1}]] )+ ( [ \frac{1^1}{1! } * e^{-1}] * [[ \frac{1^1}{ 1! } * e^{-1}]] ) + ( [ \frac{1^1}{ 1! } * e^{-1}] * [[ \frac{1^0}{ 0! } * e^{-1}]]) \}](https://tex.z-dn.net/?f=P%28x_1%20%2B%20x_2%20%5Cge%202%20%29%20%3D%20%201%20-%20%5C%7B%20%5B%20%5Cfrac%7B1%5E0%7D%7B%200%21%20%7D%20%2A%20e%5E%7B-1%7D%5D%20%2A%20%5B%5B%20%5Cfrac%7B1%5E0%7D%7B%200%21%20%7D%20%2A%20e%5E%7B-1%7D%5D%5D%20%29%2B%20%28%20%5B%20%5Cfrac%7B1%5E1%7D%7B1%21%20%7D%20%2A%20e%5E%7B-1%7D%5D%20%2A%20%5B%5B%20%5Cfrac%7B1%5E1%7D%7B%201%21%20%7D%20%2A%20e%5E%7B-1%7D%5D%5D%20%29%20%2B%20%28%20%5B%20%5Cfrac%7B1%5E1%7D%7B%201%21%20%7D%20%2A%20e%5E%7B-1%7D%5D%20%2A%20%5B%5B%20%5Cfrac%7B1%5E0%7D%7B%200%21%20%7D%20%2A%20e%5E%7B-1%7D%5D%5D%29%20%5C%7D)
=> ![P(x_1 + x_2 \ge 2 )= 1- [[0.3678 * 0.3679] + [0.3678 * 0.3679] + [0.3678 * 0.3679] ]](https://tex.z-dn.net/?f=P%28x_1%20%2B%20x_2%20%5Cge%202%20%29%3D%201-%20%5B%5B0.3678%20%20%2A%200.3679%5D%20%2B%20%5B0.3678%20%20%2A%200.3679%5D%20%2B%20%5B0.3678%20%20%2A%200.3679%5D%20%20%5D)

<span>Equation B and Equation C
Hope this helps
Happy Holidays!</span>
Answer: The value of x is 28.
Step-by-step explanation:
Since line m is parallel to line l.
So, we assume that
(3x+21)° and (4x-7)° are corresponding angles.
And we know that , corresponding angles formed when a transversal cut the parallel line are equal.
So, they must be equal to each other.

Hence, the value of x is 28.
Answer:
Her multiplication
Step-by-step explanation:
Not really an aexplanation