1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mel-nik [20]
3 years ago
12

Solve the system. y= -2x + 1 y= 2x - 3

Mathematics
2 answers:
oee [108]3 years ago
7 0

Answer:

x=1 and y=−1

Step-by-step explanation:

Step: Substitute −2x + 1 for y in y=2x−3:

y = 2x − 3

−2x + 1 = 2x − 3

−2x + 1+ − 2x = 2x − 3 + −2x (Add -2x to both sides)

−4x + 1 = −3

−4x + 1 + −1 = −3 + −1 (Add -1 to both sides)

−4x = −4

\frac{-4x}{-4} =\frac{-4}{-4} (Divide both sides by -4)

x = 1

Step: Substitute 1 for x in y = −2x + 1:

y = −2x + 1

y = (−2)(1)+1

y = −1 (Simplify both sides of the equation)

Neporo4naja [7]3 years ago
5 0

Equation 1: y = -2x + 1

Equation 2: y = 2x - 3

Since both equations already have y isolated, we are able to simply set the right side of both equations equal to each other. Since we know that the value of y must be the same, we can do this.

-2x + 1 = 2x - 3

1 = 4x - 3

4 = 4x

x = 1

Then, we need to plug our value of x back into either of the original two equations and solve for y. I will be plugging x back into equation 2 above.

y = 2x - 3

y = 2(1) - 3

y = 2 - 3

y = -1

Hope this helps!! :)

You might be interested in
Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​
Kitty [74]

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

4 0
3 years ago
If the sinA=3/5 and the cos=4/5 then what is tan A
Sladkaya [172]

Answer:

tanA = sinA / cosA = 3/5 / 4/5 = 3/4.

5 0
4 years ago
PLZ HELP ASAP AREA OF A SECTOR
timama [110]
The relationship of arcs is:
 S '/ S = ((1/9) * pi * r) / (2 * pi * r)
 Rewriting we have:
 S '/ S = ((1/9)) / (2)
 S '/ S = 1/18
 Therefore, the area of the shaded region is:
 A '= (S' / S) * A
 Where A: area of the complete circle:
 Clearing we have:
 A = (A ') / (S' / S)
 Substituting:
 A = ((1/2) pi) / (1/18)
 A = ((18/2) pi)
 A = (9pi)
 Answer:
 The area of the circle is:
 
A = (9pi)
4 0
3 years ago
The 7th grade has 159 students. There are twice as many boys in the grade as there are girls.
aleksklad [387]

Answer:

106 boys

Step-by-step explanation:

7th grade = 159 students

Boys to girls ratio:

2:1

Find two thirds of 159:

2/3*159 = 106 boys

159-106= 53 girls

Check:

53*2 = 106

3 0
3 years ago
Read 2 more answers
If the diameter of a sphere is doubled, its surface becomes
hodyreva [135]
Volumes scale as the cube of a corresponding dimension. Therefore, if the radius of a sphere is doubled (r becomes 2r), the surface area becomes 2 squared, or 4 times the original surface area. The volume would become 2 cubed, or 8 times the original volume.
8 0
3 years ago
Other questions:
  • Emily begin piano practice at 3:25 she finished at 5:00 how long did she practice​
    8·1 answer
  • What is the domain of f(x)=3^x
    6·2 answers
  • A rectangle has a length of n units its width is 6 unit less its length what is the area of the rectangle
    13·1 answer
  • Jaime went to the mall with $42. If he bought a T-shirt and had $18 left, how much did the T-shirt cost Jaime in dollars?
    6·2 answers
  • Ryan had 60 stamps. He gave 2/3 of the stamps to Olivia. In return, Olivia gave 2/3 of her stamps to Ryan how Many stamps does R
    10·1 answer
  • What name describe a triangle
    7·2 answers
  • Can you ever use a calculator to determine if a number is rational or irrational?
    5·1 answer
  • (I need the answer right now please) ΔA'B'C' was constructed using ΔABC and line segment EH. 2 triangles are shown. Line E H is
    6·2 answers
  • Solving Rational equations. LCD method. Show work. Image attached.
    11·1 answer
  • Question 1 (1 point)
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!