1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svetlana [45]
3 years ago
11

I need help on this question

Mathematics
1 answer:
Zepler [3.9K]3 years ago
6 0

Answer:

The answer is A.

They would sell 110 cookie is 3 hours.

You might be interested in
Find the function y1 of t which is the solution of 121y′′+110y′−24y=0 with initial conditions y1(0)=1,y′1(0)=0. y1= Note: y1 is
strojnjashka [21]

Answer:

Step-by-step explanation:

The original equation is 121y''+110y'-24y=0. We propose that the solution of this equations is of the form y = Ae^{rt}. Then, by replacing the derivatives we get the following

121r^2Ae^{rt}+110rAe^{rt}-24Ae^{rt}=0= Ae^{rt}(121r^2+110r-24)

Since we want a non trival solution, it must happen that A is different from zero. Also, the exponential function is always positive, then it must happen that

121r^2+110r-24=0

Recall that the roots of a polynomial of the form ax^2+bx+c are given by the formula

x = \frac{-b \pm \sqrt[]{b^2-4ac}}{2a}

In our case a = 121, b = 110 and c = -24. Using the formula we get the solutions

r_1 = -\frac{12}{11}

r_2 = \frac{2}{11}

So, in this case, the general solution is y = c_1 e^{\frac{-12t}{11}} + c_2 e^{\frac{2t}{11}}

a) In the first case, we are given that y(0) = 1 and y'(0) = 0. By differentiating the general solution and replacing t by 0 we get the equations

c_1 + c_2 = 1

c_1\frac{-12}{11} + c_2\frac{2}{11} = 0(or equivalently c_2 = 6c_1

By replacing the second equation in the first one, we get 7c_1 = 1 which implies that c_1 = \frac{1}{7}, c_2 = \frac{6}{7}.

So y_1 = \frac{1}{7}e^{\frac{-12t}{11}} + \frac{6}{7}e^{\frac{2t}{11}}

b) By using y(0) =0 and y'(0)=1 we get the equations

c_1+c_2 =0

c_1\frac{-12}{11} + c_2\frac{2}{11} = 1(or equivalently -12c_1+2c_2 = 11

By solving this system, the solution is c_1 = \frac{-11}{14}, c_2 = \frac{11}{14}

Then y_2 = \frac{-11}{14}e^{\frac{-12t}{11}} + \frac{11}{14} e^{\frac{2t}{11}}

c)

The Wronskian of the solutions is calculated as the determinant of the following matrix

\left| \begin{matrix}y_1 & y_2 \\ y_1' & y_2'\end{matrix}\right|= W(t) = y_1\cdot y_2'-y_1'y_2

By plugging the values of y_1 and

We can check this by using Abel's theorem. Given a second degree differential equation of the form y''+p(x)y'+q(x)y the wronskian is given by

e^{\int -p(x) dx}

In this case, by dividing the equation by 121 we get that p(x) = 10/11. So the wronskian is

e^{\int -\frac{10}{11} dx} = e^{\frac{-10x}{11}}

Note that this function is always positive, and thus, never zero. So y_1, y_2 is a fundamental set of solutions.

8 0
3 years ago
Which triangle has a bigger area: 1. A triangle with sides measuring 300, 400, and 500. 2. A triangle with sides measuring 300,
Kitty [74]
A triangle with sides measuring 300, 400 and 700 because 300+400+700=1400 which is higher than the first triangle 300+400+500=1200
6 0
3 years ago
My Space Mathematician Teacher needs this answer,
GaryK [48]

219864070186 - 277409297400 = -57545227214 x 780498 = -4.4913935e+16 - 1274806769367926946610431 = -1.2748068e+24 x 3.6614422e+21 = -4.6676314e+45 - 437913 = -4.6676314e+45 - 88878 = -4.6676314e+45

Ф = 500 , 5,000

5,000 / ∞ x ∞ x ∞ = 5,000^+++∞/ 68307147 = 0.00007319878^+++∞ - 917 - 974 - 9 - 19344381 = -19346280.9999^+++∞

-4.6676314e+45 -19346280.9999^+++∞ = -4.6676314e+45^+++∞

I believe that will be your answer.

I tried my best.

4 0
3 years ago
What does this equal?
anzhelika [568]
It should be about 22.55.
4 0
3 years ago
Four friends purchase a pineapple for $2.89 and 18.4 pounds of peaches. The peaches cost $1.75 per pound. The friends share the
umka21 [38]

Answer: $3.00

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Other questions:
  • Students who attend Washington Middle School are either in seventh or eighth grade. At the end of the first semester 25% of the
    10·1 answer
  • Probability question
    6·1 answer
  • the area of this triangle is 600ft to the second power what does x have to be? If it is a right triangle the verticle side is 12
    9·1 answer
  • Use Gaussian elimination to find the complete solution to the system of equations, or state that none exists. Show your work. 4x
    12·1 answer
  • Find the coordinates of the missing endpoint if B is the midpoint of AC.<br> C(5/3,-6),B(8/3,4)
    10·1 answer
  • Two workers paint lines for angled parking spaces
    11·1 answer
  • There can only be 1 answer need help plzz
    15·1 answer
  • Consider the figure below. Find the values of J, W, and A
    7·1 answer
  • After a dreary day of rain, the sun peeks through the clouds and a rainbow forms. You notice the rainbow is the shape of a parab
    8·1 answer
  • What is it 150x8-10+25=
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!