Answer:
See the explanation for the answer.
Step-by-step explanation:
Given function:

The n-th order Taylor polynomial for function f with its center at a is:

As n = 3 So,




= 3 + 0.0092592593 (x - 81) + 1/2 ( - 0.000085733882) (x - 81)² + 1/6
(0.0000018522752) (x-81)³
= 0.0092592593 x - 0.000042866941 (x - 81)² + 0.00000030871254
(x-81)³ + 2.25
Hence approximation at given quantity i.e.
x = 94
Putting x = 94
= 0.0092592593 (94) - 0.000042866941 (94 - 81)² +
0.00000030871254 (94-81)³ + 2.25
= 0.87037
03742 - 0.000042866941 (13)² + 0.00000030871254(13)³ +
2.25
= 0.87037
03742 - 0.000042866941 (169) +
0.00000030871254(2197) + 2.25
= 0.87037
03742 - 0.007244513029 + 0.0006782414503 + 2.25
= 3.113804102621
Compute the absolute error in the approximation assuming the exact value is given by a calculator.
Compute
as
using calculator
Exact value:
(94) = 3.113737258478
Compute absolute error:
Err = | 3.113804102621 - 3.113737258478 |
Err (94) = 0.000066844143
If you round off the values then you get error as:
|3.11380 - 3.113737| = 0.000063
Err (94) = 0.000063
If you round off the values up to 4 decimal places then you get error as:
|3.1138 - 3.1137| = 0.0001
Err (94) = 0.0001