Complete question is;
Multiple-choice questions each have 5 possible answers, one of which is correct. Assume that you guess the answers to 5 such questions.
Use the multiplication rule to find the probability that the first four guesses are wrong and the fifth is correct. That is, find P(WWWWC), where C denotes a correct answer and W denotes a wrong answer.
P(WWWWC) =
Answer:
P(WWWWC) = 0.0819
Step-by-step explanation:
We are told that each question has 5 possible answers and only 1 is correct. Thus, the probability of getting the right answer in any question is =
(number of correct choices)/(total number of choices) = 1/5
Meanwhile,since only 1 of the possible answers is correct, then there will be 4 incorrect answers. Thus, the probability of choosing the wrong answer would be;
(number of incorrect choices)/(total number of choices) = 4/5
Now, we want to find the probability of getting the 1st 4 guesses wrong and the 5th one correct. To do this we will simply multiply the probabilities of each individual event by each other.
Thus;
P(WWWWC) = (4/5) × (4/5) × (4/5) × (4/5) × (1/5) = 256/3125 ≈ 0.0819
P(WWWWC) = 0.0819
Answer:
A
Step-by-step explanation:
A is the answer A is the answer
Answer:
50 total
Step-by-step explanation:
when it's asking for a total you add the numbers together, and whatever number you get is your answer :)
sorry if it's wronggg :( !!
Answer:
2 and 4
Step-by-step explanation:
This is the only one where the two angles add up to 180 degrees, aka, a straight line.
Answer:
The 99% confidence interval for the true population proportion of people with kids is (0.293, 0.547).
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.
In which
z is the z-score that has a p-value of
.
Out of 100 people sampled, 42 had kids.
This means that
99% confidence level
So
, z is the value of Z that has a p-value of
, so
.
The lower limit of this interval is:
The upper limit of this interval is:
The 99% confidence interval for the true population proportion of people with kids is (0.293, 0.547).