Answer:
4.
Step-by-step explanation:
(sec α - tan α)(sec α + tan α) = sec^2 α - tan^2α
But sec^2 α = 1 + tan^2 α so
sec^2 α - tan^2α = 1 + tan^2 α - tan^2α
= 1
so 1 = (sec α - tan α)(sec α + tan α) = 1/4 * x where x is sec α + tan α
1/4 * x = 1
x = 4.
<u>Answer:</u>
a) 3.675 m
b) 3.67m
<u>Explanation:</u>
We are given acceleration due to gravity on earth =
And on planet given =
A) <u>Since the maximum</u><u> jump height</u><u> is given by the formula </u>

Where H = max jump height,
v0 = velocity of jump,
Ø = angle of jump and
g = acceleration due to gravity
Considering velocity and angle in both cases

Where H1 = jump height on given planet,
H2 = jump height on earth = 0.75m (given)
g1 = 2.0
and
g2 = 9.8
Substituting these values we get H1 = 3.675m which is the required answer
B)<u> Formula to </u><u>find height</u><u> of ball thrown is given by </u>

which is due to projectile motion of ball
Now h = max height,
v0 = initial velocity = 0,
t = time of motion,
a = acceleration = g = acceleration due to gravity
Considering t = same on both places we can write

where h1 and h2 are max heights ball reaches on planet and earth respectively and g1 and g2 are respective accelerations
substituting h2 = 18m, g1 = 2.0
and g2 = 9.8
We get h1 = 3.67m which is the required height
Answer:
4:3
Step-by-step explanation:
He has 4 Soccer Medals, 3 Swimming Medals
So it would be 4:3