Ten and five hundredths in decimal form is 10.05
Answer:
The chord is bisected.
Step-by-step explanation:
see the attached figure to better understand the problem
In the circle of the figure
The diameter is the segment DE
The chord is the segment AB
PA=PB=r ----> radius of the circle
Triangles PAC and PBC are congruent right triangles by SSS
Because
PA=PB
PC is a common side
AC=BC ----> Applying Pythagoras Theorem
therefore
The chord AB is bisected
We need to determine the radius and diameter of the circle. If the area of the circle is 10 pi in^2, then, according to the formula for the area of a circle,
A = 10 pi in^2 = pi*r^2. Thus, 10 in^2 = r^2, and r = radius of circle = sqrt(10) in.
Thus, the diam. of the circle is 2sqrt(10) in. This diam. has the same length as does the hypotenuse of one of the triangles making up the square.
Thus, [ 2*sqrt(10) ]^2 = x^2 + x^2, where x represents the length of one side of the square. So, 4(10) in^2 = 2x^2. Then:
40 in^2 = 2x^2, or 20 in^2 = x^2, and so the length x of one side of the square is sqrt(20). The area of the square is the square of this result:
Area of the square = x^2 = [ sqrt(20) ]^2 = 20 in^2 (answer). Compare that to the 10 pi sq in area of the circle (31.42 in^2).
Answer:
8a^3b^2
Step-by-step explanation:
Unfortunately, we are not presented in this item with the table in which we could have chosen from our answer to this question. However, it can be concluded that the table which contains the values of
d = p - 2.5