Answer:
(a)96.77%
(b)3.23%
Step-by-step explanation:
Starting with the Michaelis-Menten equation which is used to model biochemical reactions:
Dividing both sides by 
![\dfrac{v}{V_{max}}=\dfrac{[S]}{K_M + [S]}](https://tex.z-dn.net/?f=%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B%5BS%5D%7D%7BK_M%20%2B%20%5BS%5D%7D)
Where:
maximum rate achieved by the system
=The Michaelis constant
Substrate concentration
(a) When ![[S]=30K_M](https://tex.z-dn.net/?f=%5BS%5D%3D30K_M)
![\dfrac{v}{V_{max}}=\dfrac{[S]}{K_M + [S]}\\\dfrac{v}{V_{max}}=\dfrac{30K_M}{K_M + 30K_M}\\\dfrac{v}{V_{max}}=\dfrac{30}{1 + 30}\\\dfrac{v}{V_{max}}=\dfrac{30}{31}\\$Expressed as a percentage\\\dfrac{v}{V_{max}}=\dfrac{30}{31}X100=96.77\%](https://tex.z-dn.net/?f=%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B%5BS%5D%7D%7BK_M%20%2B%20%5BS%5D%7D%5C%5C%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B30K_M%7D%7BK_M%20%2B%2030K_M%7D%5C%5C%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B30%7D%7B1%20%2B%2030%7D%5C%5C%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B30%7D%7B31%7D%5C%5C%24Expressed%20as%20a%20percentage%5C%5C%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B30%7D%7B31%7DX100%3D96.77%5C%25)
(b)When ![K_M=30[S]](https://tex.z-dn.net/?f=K_M%3D30%5BS%5D)
![\dfrac{v}{V_{max}}=\dfrac{[S]}{K_M + [S]}\\\dfrac{v}{V_{max}}=\dfrac{[S]}{30[S] + [S]}\\\\=\dfrac{1[S]}{30[S] + 1[S]}\\=\dfrac{1}{30 + 1}\\\dfrac{v}{V_{max}}=\dfrac{1}{31}\\$Expressed as a percentage\\\dfrac{v}{V_{max}}=\dfrac{1}{31}X100=3.23\%](https://tex.z-dn.net/?f=%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B%5BS%5D%7D%7BK_M%20%2B%20%5BS%5D%7D%5C%5C%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B%5BS%5D%7D%7B30%5BS%5D%20%2B%20%5BS%5D%7D%5C%5C%5C%5C%3D%5Cdfrac%7B1%5BS%5D%7D%7B30%5BS%5D%20%2B%201%5BS%5D%7D%5C%5C%3D%5Cdfrac%7B1%7D%7B30%20%2B%201%7D%5C%5C%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B1%7D%7B31%7D%5C%5C%24Expressed%20as%20a%20percentage%5C%5C%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B1%7D%7B31%7DX100%3D3.23%5C%25)
Answer:
y = -5x - 25
Step-by-step explanation:
Substitute into form of y - y1 = m(x - x1): (Take the point (-7,10) for x1 & y1, m would be the slope)
y - 10 = -5(x -(-7))
y - 10 = -5(x + 7)
y - 10 = -5x - 35
y = -5x - 25
2x=5 so 5÷2 = x (2.5)
3y = 4 so 4÷3 = y (1.3 recurring)
4z = 3 so 3÷4 = z (0.75)
implement: 24x2.5x1.3•x0.75
hope i answered right
When considering similar triangles, we need congruent angles and proportional sides.
Hence
"Angles B and B' are congruent, and angles C and C' are congruent." is sufficient to prove similarity of two triangles.
"Segments AC and A'C' are congruent, and segments BC and B'C' are congruent." does not prove anything because we know nothing about the angles.
"Angle C=C', angle B=B', and segments BC and B'C' are congruent." would prove ABC is congruent to A'B'C' if and only if AB is congruent to A'B' (not just proportional).
"<span>Segment BC=B'C', segment AC=A'C', and angles B and B' are congruent</span>" is not sufficient to prove similarity nor congruence because SSA is not generally sufficient.
To conclude, the first option is sufficient to prove similarity (AAA)
Answer:
A. 0.623
Step-by-step explanation:
Hope it helps you in your learning process.