The reaction between the reactants would be:
CH₃NH₂ + HCl ↔ CH₃NH₃⁺ + Cl⁻
Let the conjugate acid undergo hydrolysis. Then, apply the ICE approach.
CH₃NH₃⁺ + H₂O → H₃O⁺ + CH₃NH₂
I 0.11 0 0
C -x +x +x
E 0.11 - x x x
Ka = [H₃O⁺][CH₃NH₂]/[CH₃NH₃⁺]
Since the given information is Kb, let's find Ka in terms of Kb.
Ka = Kw/Kb, where Kw = 10⁻¹⁴
So,
Ka = 10⁻¹⁴/5×10⁻⁴ = 2×10⁻¹¹ = [H₃O⁺][CH₃NH₂]/[CH₃NH₃⁺]
2×10⁻¹¹ = [x][x]/[0.11-x]
Solving for x,
x = 1.483×10⁻⁶ = [H₃O⁺]
Since pH = -log[H₃O⁺],
pH = -log(1.483×10⁻⁶)
<em>pH = 5.83</em>
C2H2 is the right answer I believe
Correct answer is <span>Fuels do not have to be purchased to generate power.</span>
Answer:
change the concentration of one reactant while keeping the other concentrations constant
Explanation:
For a given reaction;
A + B --> C + D
The reaction rate may be given as;
Rate = k[A][B]
In the above rate equation, the orders of both reactants ( A and B) is 1 . Reaction order is basically how the concentration of the reactant affect the rate of the equation.
The correct option is;
change the concentration of one reactant while keeping the other concentrations constant.
That way, one can monitor how a particular reactant affect the rate of the reaction.
Answer:
pH = 9.6
Explanation:
According to Brönsted-Lowry theory, NH₃ is a base and NH₄⁺ its conjugate acid. When they are together in a solution, the form a buffer, which is used to resist abrupt changes in pH when an acid or a base is added. pOH fro a buffer can be found using Henderson-Hasselbalch equation.

Since NH₄Cl is a strong electrolyte, [NH₄Cl] = [NH₄⁺]
![pOH = pKb + log\frac{[NH_{4}^{+} ]}{[NH_{3}]} =4.7+log\frac{0.035M}{0.070M} =4.4](https://tex.z-dn.net/?f=pOH%20%3D%20pKb%20%2B%20log%5Cfrac%7B%5BNH_%7B4%7D%5E%7B%2B%7D%20%5D%7D%7B%5BNH_%7B3%7D%5D%7D%20%3D4.7%2Blog%5Cfrac%7B0.035M%7D%7B0.070M%7D%20%3D4.4)
Now, we can find pH using the following expression:
pH + pOH = 14
pH = 14 - pOH = 14 - 4.4 = 9.6