A asystem at equilibrium stops
Element atomic number position
Ba 56 group 2, period 6
Ca 12 group 2, period 3
S 16 group 16, period 3
Si `14 group 14, period 3
Now, you need to know the properties of the different type of elements and the tendencies on the periodic table.
The metallic elements are, those placed on the left side of the periodic table, are the ones that release an electron more easily, so they will requiere less energy to give it up when forming chemical bonds.
The higher the metallic character the less the energy need to give up an electron.
The metallic character grows as the group number decreases (goes to the left) period increases (goes downward), so among the elements considered, Barium will require the least amount of energy to give un an electron when forming chemical bonds.
Gasoline is refined petroleum used in engines as a fuel. It contains octane that can be converted to isooctane by adding catalysts like platinum and palladium.
<h3>What are catalysts?</h3>
Catalysts are substances that raise the reaction rate by decreasing the activation energy but do not get consumed themselves in a reaction.
Platinum and palladium metals can be used as a catalyst to convert the octane of the gasoline into isooctane as they are oxidation catalyst that converts the fuel components into water and carbon dioxide.
Therefore, platinum and palladium are used as catalysts in converting octane.
Learn more about catalysts here:
brainly.com/question/1392595
#SPJ4
Number of second in human lives in scientific notation is 3.9 × 10⁷ second
<u>Given that;</u>
Average human lives = 74 years
<u>Find:</u>
Number of second in human lives in scientific notation
<u>Computation:</u>
Number of second in human lives in scientific notation = 74 × 365 × 24 × 60
Number of second in human lives in scientific notation = 38,894,400
Number of second in human lives in scientific notation = 3.9 × 10⁷ second
Learn more:
brainly.com/question/3712546?referrer=searchResults
Answer:
Reaction 5: Decomposition reaction.
Reaction 6: Single replacement reaction
Reaction 7: Combination reaction.
Reaction 8: Combustion reaction.
Explanation:
<u><em>Reaction 5:</em></u> 2KClO₃ → 2KCl + 3O₂.
- It is a decomposition reaction.
- A decomposition reaction is a type of chemical reaction in which a single compound breaks down into two or more elements or new compounds.
- In this reaction: potassium chlorate decomposes into two single components (potassium chloride and oxygen).
- So, it is a decomposition reaction.
<u><em>Reaction 6:</em></u> Zn + 2HCl → H₂ + ZnCl₂.
- It is a single replacement reaction.
- A single-replacement reaction, a single-displacement reaction, is a reaction by which one (or more) element(s) replaces an/other element(s) in a compound.
- It is most often occur if element is more reactive than the other, thus giving a more stable product.
- In this reaction, zinc metal (more active) displaces the hydrogen to form hydrogen gas and zinc chloride, a salt. Zinc reacts quickly with the acid to form bubbles of hydrogen.
<u><em>Reaction 7:</em></u> N₂O₅ + H₂O → 2HNO₃.
- It is a combination "synthesis" reaction.
- A synthesis reaction has two or more reactants and only one product.
- In this reaction, dinitrogen pentoxide reacts with water to produce nitric acid.
- So, it is considered as a synthetic "combination" reaction.
<u><em>Reaction 8:</em></u> 2C₂H₆ + 7O₂ → 4CO₂ + 6H₂O.
- It is a combustion reaction.
- A combustion reaction is a reaction where hydrocarbon alkane is completely burned in oxygen to produce water and carbon dioxide.
- In this reaction 1.0 mole of ethane is burned to give 4.0 moles of carbon dioxide and 6.0 moles of water.
- So, it is considered as a combustion reaction.