The magnitude of the magnetic field on the axis of the ring 5 cm from its center is 143 pT.
The radius of the nonconducting ring is R = 10 cm.
The ring is uniformly charged q = 10 μC.
The angular speed of the ring, ω = 20 rad/s
The ring is x = 5 cm from the center of the ring.
Now,
R = 10 cm = 0.1 m
q = 10.0 μC = 10 × 10⁻⁶ C
x = 5 cm = 0.05 m
The magnetic field on the axis of a current loop is given as:
B = [ μ₀ IR² ] / [4π(x² + R²)^{3/2} ]
Now, I = q / [2π/ω]
So, the magnitude of the magnetic field which is directed away from the center is:
B = [ μ₀ ωqR² ] / [4π(x² + R²)^{3/2} ]
B = [ μ₀ (200) (10 × 10⁻⁶) (0.1)² ] / [4π((0.05)² + (0.1)²)^{3/2} ]
B = 1.43 × 10⁻¹⁰ T
B = 143 pT
Learn more about the magnetic field here:
brainly.com/question/14411049
#SPJ4
For a smooth surface, reflected light rays travel in the same direction. This is called specular reflection. For a rough surface, reflected light rays scatter in all directions. This is called diffuse reflection. Diffuse reflection is when light hits an object and reflects in lots of different directions.
Polar molecules do have ionic bonds
Answer:
a) σa−σb−σc−σd=0
Explanation:
The parallel plate capacitor is the one in which two metal plates are connected in parallel with some distancing among them. The electric field from both plates is denoted by E = σ / 2ϵ0. The σ is the charge density. The Electric field in plate I will vanish when the surface charge of σa is positive and rest of the charges are negative. The correct option is a.