<u>Given</u>:
The given function is ![f(x)=4x^2+2x+6](https://tex.z-dn.net/?f=f%28x%29%3D4x%5E2%2B2x%2B6)
We need to determine the value of the discriminant f and also to determine the distinct real number zeros of f.
<u>Discriminant</u>:
The discriminant can be determined using the formula,
![\Delta = b^2-4ac](https://tex.z-dn.net/?f=%5CDelta%20%3D%20b%5E2-4ac)
Now, we shall determine the discriminant of the function ![f(x)=4x^2+2x+6](https://tex.z-dn.net/?f=f%28x%29%3D4x%5E2%2B2x%2B6)
Substituting the values in the formula, we have;
![\Delta=(2)^2-4(4)(6)](https://tex.z-dn.net/?f=%5CDelta%3D%282%29%5E2-4%284%29%286%29)
![\Delta=4-96](https://tex.z-dn.net/?f=%5CDelta%3D4-96)
![\Delta=-92](https://tex.z-dn.net/?f=%5CDelta%3D-92)
Thus, the value of the discriminant of f is -92.
<u>Distinct roots:</u>
The distinct zeros of the function f can be determined by
(1) If
, then the function has 2 real roots.
(2) If
, then the function has 2 real roots ( or one repeated root).
(3) If
, then the function has 2 imaginary roots (or no real roots).
Since, the discriminant is
, then the function has no real roots or 2 imaginary roots.
Thus, the function has 2 imaginary roots.