Answer:
IT SHOULD BE 240
Step-by-step explanation:
1) Multiply 20 by 10 for 200
2) Lenght=20 so half is 10
3) multiply 10 by 4 and divide by 2 which gives 20
4) Multiply 20 by 2 because there are 2 rectangles which gives us 40
5) Add 200 and 40 which gives answer of 240
we are given that
f(x) is defined for all values of x except at x=c
Limit may or may not exist
case-1:
If there is hole at x=c , then limit exist
case-2:
If there is vertical asymptote at x=c , then limit does not exist
Examples:
case-1:
![\lim_{x \to c} \frac{x^2-cx}{(x-c)}](https://tex.z-dn.net/?f=%20%5Clim_%7Bx%20%5Cto%20c%7D%20%5Cfrac%7Bx%5E2-cx%7D%7B%28x-c%29%7D)
We can simplify it
![\lim_{x \to c} \frac{x(x-c)}{(x-c)}](https://tex.z-dn.net/?f=%20%5Clim_%7Bx%20%5Cto%20c%7D%20%5Cfrac%7Bx%28x-c%29%7D%7B%28x-c%29%7D)
![=\lim_{x \to c} x](https://tex.z-dn.net/?f=%20%3D%5Clim_%7Bx%20%5Cto%20c%7D%20x)
![=c](https://tex.z-dn.net/?f=%20%3Dc)
so, we can see that limit exist and it's value defined
case-2:
![\lim_{x \to c} \frac{1}{(x-c)}](https://tex.z-dn.net/?f=%20%5Clim_%7Bx%20%5Cto%20c%7D%20%5Cfrac%7B1%7D%7B%28x-c%29%7D)
Left limit is
![\lim_{x \to c-} \frac{1}{(x-c)}](https://tex.z-dn.net/?f=%20%5Clim_%7Bx%20%5Cto%20c-%7D%20%5Cfrac%7B1%7D%7B%28x-c%29%7D)
![=-\infty](https://tex.z-dn.net/?f=%20%3D-%5Cinfty)
Right Limit is
![\lim_{x \to c+} \frac{1}{(x-c)}](https://tex.z-dn.net/?f=%20%5Clim_%7Bx%20%5Cto%20c%2B%7D%20%5Cfrac%7B1%7D%7B%28x-c%29%7D)
![=+\infty](https://tex.z-dn.net/?f=%20%3D%2B%5Cinfty)
so, we can see that left limit is not equal to right limit
so, limit does not exist
Answer:
1) D
2) A
Step-by-step explanation:
<h2>
Answer:</h2>
<u>The length of hypotenuse of triangle is:</u><u>40.24 units</u>.
<h2>Explanation:</h2>
check the attach picture for solution.