1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alenkasestr [34]
4 years ago
12

I have a combination of myopia and presbyopia—overall, the power of my visual system is too large, but I also have a very limite

d range of accommodation. My glasses have progressive lenses. The lenses are diverging lenses, with a negative power, but the magnitude of the power varies from a maximum at the top, for distance vision, to a minimum at the bottom, for close vision. With no correction, for my left eye, my near point is 15 cm, my far point is 20 cm. With my glasses on, my near point is about 25 cm, and my far point is infinity. What is the range of powers of the lens in my glasses?
Physics
1 answer:
e-lub [12.9K]4 years ago
3 0

Answer:

The range of powers is    - 5 \ D \le P \le - 2.667\  D

Explanation:

From the question we are told that

       The far point of the left eye is n_f = 20 cm

       The near point of the left eye is  n =  15cm

       The near point with the glasses on is n_g =25 \ cm

     

From these parameter we can see that with the glass on that for near point the

         Object distance would be u = -25 \ cm

          Image distance would be  v =  -15 \ cm

To obtain the focal length we would apply the lens formula which is mathematically represented as

              \frac{1}{f} =  \frac{1}{v}  -  \frac{1}{u}

substituting values

              \frac{1}{f} =  \frac{1}{-15}  -  \frac{1}{-25}

               f =  - \frac{75}{2} cm

           converting to  meters

               f =  - \frac{75}{2} * \frac{1}{100}

               f =  - \frac{75}{200} \ m

   Generally the power of the lens is mathematically represented as

                P  = \frac{1}{f}

Substituting values

                 P = -  \frac{200}{75}  m

                 P = - 2.667 \ D

   

From these parameter we can see that with the glass on that for far  point the

         Object distance would be u_f = - \infty \ cm

          Image distance would be  v_f =  -20  \ cm

To obtain the focal length of the lens we would apply the lens formula which is mathematically represented as

                    \frac{1}{f_f} =  \frac{1}{v_f}  -  \frac{1}{u_f}

substituting values

                  \frac{1}{f} =  \frac{1}{-20}  -  \frac{1}{- \infty}

                 \frac{1}{f} =  \frac{1}{-20}  -  0      

                  f_f =  \frac{20}{1}  \ cm

converting to  meters

                f_f =  - \frac{20}{1}  * \frac{1}{100}

               

Generally the power of the lens is mathematically represented as

                P  = \frac{1}{f_f}

Substituting values

                 P = -  \frac{100}{20}  m

                 P = - 5 \ D

This implies that the range of powers of the lens in his glass is

                  - 5 \ D \le P \le - 2.667\  D

   

               

               

           

You might be interested in
If two swimmers compete in a race, does the faster swimmer develop more power?
valkas [14]
Power is equal to energy per unit time. In this case, power is proportional to energy while is inversely proportional to time,on the other hand. Given the two swimmers exerts same amount of energy but the faster swimmer just does things in faster time, then the faster swimmer should develop more power from shorter time
7 0
3 years ago
A car hits another and the two bumpers lock together during the collision. is this an elastic or inelastic collision?
valkas [14]
Inelastic.
If it was elastic, they'd bump right off each other. But since they've been locked, or stuck together, this is inelastic.
8 0
3 years ago
Speed and Motion you went from the starting line to the finish line at different rates. If you repeated the activity while carry
Phantasy [73]

Answer:

It will cause kinetic energy to increase.

Explanation:

Given that Speed and Motion you went from the starting line to the finish line at different rates.

If you repeated the activity while carrying weights but keeping your times the same, the weight carried will add up to the mass of the body.

And since Kinetic energy K.E = 1/2mv^2

Increase in the mass of the body will definitely make the kinetic energy of the body to increase.

Since the time is the same, that means the speed V is the same.

Weight W = mg

m = W/g

The new kinetic energy will be:

K.E = 1/2(M + m)v^2

This means that there will be increase in kinetic energy.

3 0
3 years ago
Can someone plzzzz help with these 3 I don’t understand
Aleks [24]

12.) Active transport because the cell must use energy to move large particles across the membrane.

13.) Photosynthesis takes place in plant leaves containing the chlorophyll pigment. Cellular respiration takes place in the cytoplasm and mitochondria of the cell. ... Cellular respiration uses glucose molecules and oxygen to produce ATP molecules and carbon dioxide as the by-product.

14.) In cells with a nucleus, as in eukaryotes, the cell cycle is also divided into two main stages: interphase and the mitotic (M) phase (including mitosis and cytokinesis). During interphase, the cell grows, accumulating nutrients needed for mitosis, and undergoes DNA replication preparing it for cell division.

4 0
3 years ago
The intensity at distance from a spherically symmetric sound source is 100 W/m2. What is the intensity at five times this distan
ss7ja [257]

To solve this problem it is necessary to apply the concepts related to intensity as a function of power and area.

Intensity is defined to be the power per unit area carried by a wave. Power is the rate at which energy is transferred by the wave. In equation form, intensity I is

I = \frac{P}{A}

The area of a sphere is given by

A = 4\pi r^2

So replacing we have to

I = \frac{P}{4\pi r^2}

Since the question tells us to find the proportion when

r_1 = 5r_2 \rightarrow \frac{r_2}{r_1} = \frac{1}{5}

So considering the two intensities we have to

I_1 = \frac{P_1}{4\pi r_1^2}

I_2 = \frac{P_2}{4\pi r_2^2}

The ratio between the two intensities would be

\frac{I_1}{I_2} = \frac{ \frac{P_1}{4\pi r_1^2}}{\frac{P_2}{4\pi r_2^2}}

The power does not change therefore it remains constant, which allows summarizing the expression to

\frac{I_1}{I_2}=(\frac{r_2}{r_1})^2

Re-arrange to find I_2

I_2 = I_1 (\frac{r_1}{r_2})^2

I_2 = 100*(\frac{1}{5})^2

I_2 = 4W/m^2

Therefore the intensity at five times this distance from the source is 4W/m^2

3 0
3 years ago
Other questions:
  • Sodium and potassium are soft silvery metals. They are both solids at room temperature and react strongly when combined with wat
    12·2 answers
  • A block of mass 0.1 kg is attached to a spring of spring constant 22 N/m on a frictionless track. The block moves in simple harm
    9·1 answer
  • Your town is thinking about building a nuclear power plant. You will be asked to vote on it. Which source would provide the most
    5·1 answer
  • 1. How do populations of invasive species continue to grow, and disrupt ecosystems?
    9·2 answers
  • PLZ HELP ME!!!!!!!!! WILL GIVE BRAINLY!!!!!!!! Which photo represents a waxing gibbous moon?
    13·1 answer
  • For comparison, what is the magnitude of the acceleration a test tube would experience if dropped from a height of 1.0 m and sto
    6·1 answer
  • According to the information in the table, who is the fastest typist? ella
    5·2 answers
  • Explain What the core muscles do and why it's important to have a strong set of core muscles.​
    14·2 answers
  • How is eveyones day or night going
    6·2 answers
  • The flywheel in the shape of a solid cylinder of mass 75.0 kg and diameter 1.40 m rotates about an axis passing through the cent
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!