Answer:
1995 and 2000 , 4 trillions
Explanation:
It took so long because at the time there was no way for people to study the behavior formally. im not sure what helped it get recognized but i know wihelm wundt helped get it recongnized.
sorry i couldnt be much help
The part you talk into, that converts the sound of your voice
into an electrical signal, is a tiny microphone.
-- The sound waves from your voice are ripples in the air.
-- In most microphones, there's a tiny coil of wire hanging
between the ends of a tiny magnet.
-- When the ripples in the air hit the little coil of wire, they
make it vibrate (wiggle) slightly.
-- When a coil of wire wiggles in the field of a magnet,
a current flows in the wire.
There's your electrical signal !
Answer:
* The first thing we observe is that the frequency response does not change
* The current that circulates in the circuit decreases due to the new resistance at the resonance point,
Z = R + R₂
Explanation:
The impedance of a series circuit is
Z₀² = R² + (X_L-X_C) ²
when we place another resistor in series the initial resistance impedance changes to
Z² = (R + R₂) ² + (X_L - X_C) ²
let's analyze this expression
* The first thing we observe is that the frequency response does not change
* The current that circulates in the circuit decreases due to the new resistance at the resonance point,
Z = R + R₂
Answer:
(a) θ = 33.86°
(b) Ay = 49.92 N
Explanation:
You have that the magnitude of a vector is A = 89.6 N
The x component of such a vector is Ax = 74.4 N
(a) To find the angle between the vector and the x axis you use the following formula for the calculation of the x component of a vector:
(1)
Ax: x component of vector A
A: magnitude of vector A
θ: angle between vector A and the x axis
You solve the equation (1) for θ, by using the inverse of cosine function:

the angle between the A vector and the x axis is 33.86°
(b) The y component of the vector is given by:

the y comonent of the vecor is Ay = 49.92 N