Answer:
There is 5.56 g of gold for every 1 g of chlorine
Explanation:
The question is to determine the simplest mass ratio of gold to Chlorine in the compound.
Since the mass of gold in the compound compared to chlorine is 15.39 g for every 2.77 g, the mass of gold per gram of chlorine is given as:
15.39 / 2.77 = 5.56 g of gold to two decimal places
<em>Therefore, for every 5.56 g of gold, there is 1 g of chlorine.</em>
<em>Note : The ratio in which different elements combine by mass to form a compound is given by the law of constant composition which states that, "all pure samples of a particular chemical compound contain the same elements combined in the same proportion by mass.</em>
Benzene is more stable because it contains a ring and therefore an aromatic compound. On the other hand, 1,3,5-hexatriene, as a straight-chain alkene, is aliphatic. Aromatic compounds in general are more stable than their aliphatic counterparts because pi electrons are part of a conjugated system, meaning they are "shared" amongst all double-bonded atoms.
The nitrogen atom in NH3 is sp3 hybridized. ... In NH3 molecule, three of the sp3 orbitals are used to formbonds to the three hydrogen atoms and the fourth sp3 orbital is used to hold the lone pair. and is sometimes called a non-bonding pair.
Atomic number refers to the proton number of the atom itself. Number of electrons in an atom (an atom that is not reacted with any other molecules / Just the atom alone), is the same as the number of protons, because each electron has 1 negative charge, and each proton 1 positive charge, where they cancel out on each other to become a neutral charge.
So, when atomic number is 6, proton number is also 6, and number of electrons will also be 6 in that atom.
Hope this helps! :)
Substitution Reactions are those reactions in which one nucleophile replaces another nucleophile present on a substrate. These reactions can take place via two different mechanism i.e SN¹ or SN². In SN¹ substitution reactions the leaving group leaves first forming a carbocation and nucleophile attacks carbocation in the second step. While in SN² reactions the addition of Nucleophile and leaving of leaving group take place simultaneously.
Example:
OH⁻ + CH₃-Br → CH₃-OH + Br⁻
In above reaction,
OH⁻ = Incoming Nucleophile
CH₃-Br = Substrate
CH₃-OH = Product
Br⁻ = Leaving group
Organic reactions are typically slower than ionic reactions because in organic compounds the covalent bonds are first broken, this breaking of bonds is a slower step, while, in ionic compounds no bond breakage is required as it consists of ions, so only bond formation takes place which is a quicker and fast step.