Hello. This question is incomplete. The full question is:
"Consider the following reaction. 2NO(g) + 2H2(g) → N2(g) + 2H2O(g)
A proposed reaction mechanism is: NO(g) + NO(g) N2O2(g) fast N2O2(g) + H2(g) → N2O(g) + H2O(g) slow N2O(g) + H2(g) → N2(g) + H2O(g) fast
What is the rate expression? A. rate = k[H2] [NO]2 B. rate = k[N2O2] [H2] C. rate = k[NO]2 [H2]2 D. rate = k[NO]2 [N2O2]2 [H2]"
Answer:
A. rate = k[H2] [NO]2
Explanation:
A reaction mechanism is a term used to describe a set of phases that make up a chemical reaction. In these phases a detailed sequence of each step is shown, composed of several complementary reactions, which occur during a chemical reaction.
These mechanisms are directly related to chemical kinetics and allow changes in reaction rates to be observed in advance.
Reaction rate, on the other hand, refers to the speed at which chemical reactions occur.
Based on this, we can observe through the reaction mechanism shown in the question above, that the action "k [H2] [NO] 2" would have no changes in the reaction rate.
The molar mass of carbon is 12, hydrogen is 1, and
nitrogen is 14, hence the ratio are:
C = 38.65 / 12 = 3.22
H = 16.25 / 1 = 16.25
N = 45.09 / 14 = 3.22
Divide the three by the lowest ratio which is 3.22:
C = 3.22 / 3.22 = 1
H = 16.25 / 3.22 = 5
N = 3.22 / 3.22 = 1
So the empirical formula is:
CHN
Answer:
Animals tend to use carbohydrates primarily for short-term energy storage, while lipids are used more for long-term energy storage. Carbohydrates are stored as glycogen in animals while lipids are stored as fats (in plants carbohydrates are stored as cellulose and lipids as oils)
Explanation:
hope this helps!
PbCl2 would not dissolve because it is insoluble based on the solubility rules for substances that will dissolve in water. This compound would instead form a solid precipitate at the bottom of the container.