<span>Find the equation of the line parallel to the line y = 4x – 2 that passes through the point (–1, 5).
</span>y = 4x – 2 has slope = 4
<span>parallel lines have same slope so slope = 4
</span><span>passes through the point (–1, 5).
</span><span>y = mx+b
5 = 4(-1) + b
b =9
equation
y = 4x + 9
answer
The slope of y = 4x – 2 is 4
The slope of a line parallel to y = 4x – 2 is 4
The equation of the line parallel to y = 4x – 2 that passes through the point (–1, 5) is y = 4x + 9</span>
A. 2x+y=25; x+y=20
x represents cheese wafers and y represents chocolate wafers.
B. I will choose elimination since there is y and y. I can multiply one equation by -1 to get y and -y, which cancels out.
2x+y=25
-x-y=-20
Add equations
x=5
Plug x in
5+y=20
y=15
Final answer: 5 cheese wafers, 15 chocolate wafers
(a) If the particle's position (measured with some unit) at time <em>t</em> is given by <em>s(t)</em>, where

then the velocity at time <em>t</em>, <em>v(t)</em>, is given by the derivative of <em>s(t)</em>,

(b) The velocity after 3 seconds is

(c) The particle is at rest when its velocity is zero:

(d) The particle is moving in the positive direction when its position is increasing, or equivalently when its velocity is positive:

In interval notation, this happens for <em>t</em> in the interval (0, √11) or approximately (0, 3.317) s.
(e) The total distance traveled is given by the definite integral,

By definition of absolute value, we have

In part (d), we've shown that <em>v(t)</em> > 0 when -√11 < <em>t</em> < √11, so we split up the integral at <em>t</em> = √11 as

and by the fundamental theorem of calculus, since we know <em>v(t)</em> is the derivative of <em>s(t)</em>, this reduces to

Answer:
The quotient of (x^2-4xy) is x-4y
Step-by-step explanation: