Answer:
3+sqrt(13/2)
3-sqrt(13/2)
Step-by-step explanation:
2 (x-3) ^2 =13
Divide each side by 2
2/2 (x-3) ^2 =13/2
(x-3) ^2 =13/2
Take the square root of each side
sqrt((x-3) ^2) =±sqrt(13/2)
x-3 = ±sqrt(13/2)
Add 3 to each side
x-3+3 = 3±sqrt(13/2)
x = 3±sqrt(13/2)
Answer:
108° Make me Brainliest pls
An=a1r^(n-1)
given
a5=1/24
a10=1/768
we know that
a5=1/24=a1r^(5-1) and
a10=1/768=a1r^(10-1)
so
1/24=a1r^4
1/768=a1r^9
(a1r^9)/(a1r^4)=r^5=(1/768)/(1/24)=1/32
r^5=1/32
take 5th root of both sides
r=1/2
we have
a5=a1r^4=1/24
evaluate r^4 or (1/2)^4
1/16
a1(1/16)=1/24
times both sides by 16/1
a1=16/24
a1=2/3
the first term is 2/3
Theoretical probability:
1 ... (16 and 2/3) %
2 ... (16 and 2/3) %
3 ... (16 and 2/3) %
4 ... (16 and 2/3) %
5 ... (16 and 2/3) %
6 ... (16 and 2/3) %
Experimental results:
1 ... 18
2 ... 16
3 ... 16
4 ... 17
5 ... 16
6 ... 17
The total number of rolls in the experiment was
(18 + 16 + 16 + 17 + 16 + 17) = 100
so the expected frequency for each outcome was 16-2/3 times,
and the SIMULATION probabilities were
1 ... 18%
2 ... 16%
3 ... 16%
4 ... 17%
5 ... 16%
6 ... 17%
To me, this looks fantastically close. The cube
could hardly be more fair than it actually is.