Answer:
<h2 /><h2>The interquartile range (IQR) is the difference between the upper (Q3) and lower (Q1) quartiles, and describes the middle 50% of values when ordered from lowest to highest. The IQR is often seen as a better measure of spread than the range as it is not affected by outliers. Interquartile Range. 25% of values.</h2>
<h2 />
<h2>here your answer </h2>
Answer:
The quotient = 4x - 17 and the remainder = 54
Step-by-step explanation:


The quotient = 4x - 17 and the remainder = 54
option D is the correct option
y= 10- 2x
Now, if we take the first value of x i.e 1
then, y= 10-2(1)
= 10-2 = 8 ---------> this value matches with the given value of y
take,x =2
y=10-2(2) = 10-4 = 6--------->this value matches with the given value of y
taking, x = 3
y= 10-2(3) = 10- 6=4-------->this value matches with the given value of y
Solve for p by simplifying both sides of the equation, then isolating the variable.
p=6
Answer:
y = 3/5x + 62/5
Step-by-step explanation:
Equation of a line with two points is
m = y - y_1 / x - x _1
m = y_2 - y_1 / x_2 - x _1
Equating both
y - y_1 / x - x_1 = y_2 - y_1 / x_2 - x_1
Using what we are provided with
(-4 , 10)(16 , -2)
x_1 = -4
y_1 = 40
x_2 = 16
y_2 = -2
Imputing the values
10 - (-2) / 16 - (-4) = y - 10 / x - (-4)
10 + 2 /16 + 4 = y - 10 / x + 4
12 / 20 = y - 10 / x + 4
Lets cross multiply
12 ( x + 4) = 20(y - 10)
Open the brackets
12x + 48 = 20y - 200
12x + 48 + 200 = 20y
12x + 248 = 20y
Following this equation of line
y = mx + C
20y = 12x + 248
Let's divide through by 20 to get y.
20y / 20 = 12x + 248 / 20
y = 12x + 248 / 20
We can separate it by
y = 12x / 20 + 248 / 20
y = 3/5x + 62/5
Therefore, the equation of the line is
y = 3/5x + 62/5