The bicyclist accelerates with magnitude <em>a</em> such that
25.0 m = 1/2 <em>a</em> (4.90 s)²
Solve for <em>a</em> :
<em>a</em> = (25.0 m) / (1/2 (4.90 s)²) ≈ 2.08 m/s²
Then her final speed is <em>v</em> such that
<em>v</em> ² - 0² = 2<em>a</em> (25.0 m)
Solve for <em>v</em> :
<em>v</em> = √(2 (2.08 m/s²) / (25.0 m)) ≈ 10.2 m/s
Convert to mph. If you know that 1 m ≈ 3.28 ft, then
(10.2 m/s) • (3.28 ft/m) • (1/5280 mi/ft) • (3600 s/h) ≈ 22.8 mi/h
Answer:
Explanation:
the object will not move as the force exerted is not sufficient enough to overcome its force of friction
D I think .... don’t be mad if I’m wrong
To solve this problem we will apply the concepts related to pressure, depending on the product between the density of the fluid, the gravity and the depth / height at which it is located.
For mercury, density, gravity and height are defined as



For the air the defined properties would be



We have for equilibrium that


Replacing,

Rearranging to find 


Therefore the elevation of the mountain top is 9400ft