1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shepuryov [24]
3 years ago
12

How is multiplying two decimals different from multiplying one decimal by a whole number?

Mathematics
1 answer:
Natasha2012 [34]3 years ago
4 0

Answer: The major difference is that after you have finished multiplying all the terms (while ignoring the decimal points), you have to add up how many decimal places there are in the factors, and put that many decimal places in the answer.

Step-by-step explanation:

You might be interested in
Classify each polynomial according to its degree and type. Look at the screenshot below!
Ahat [919]

Answer:

                  Monomial    Binominal     Trimoninal

Degree 1:        -9x               x + 6

Degree 2:       -4x^{2}             4x^{2} -x       x -3x^{2} + 1

Degree 3:        4x^{3}            5 - 2x^{3}         3x^{2}  + 3x^{3} -10

Step-by-step explanation:

I do not know how to explain how I got to this answer, but here is the answer.

8 0
2 years ago
Help me idk how do do this ;-;
Kobotan [32]

Answer:

idk either

Step-by-step explanation:

8 0
3 years ago
Solve for x in the equation 2x^2+3x-7=x^2+5x+39
Shalnov [3]
Hey there, hope I can help!

\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides}
2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)

Assuming you know how to simplify this, I will not show the steps but can add them later on upon request
x^2-2x-46=0

Lets use the quadratic formula now
\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\left(-46\right)}}{2\cdot \:1}

\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

Multiply the numbers 2 * 1 = 2
\frac{2+\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}

\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \sqrt{\left(-2\right)^2+1\cdot \:4\cdot \:46} \ \textgreater \  \left(-2\right)^2=2^2, 2^2 = 4

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \  \sqrt{4+184} \ \textgreater \  \sqrt{188} \ \textgreater \  2 + \sqrt{188}
\frac{2+\sqrt{188}}{2} \ \textgreater \  Prime\;factorize\;188 \ \textgreater \  2^2\cdot \:47 \ \textgreater \  \sqrt{2^2\cdot \:47}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \  \sqrt{47}\sqrt{2^2}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \  \sqrt{2^2}=2 \ \textgreater \  2\sqrt{47} \ \textgreater \  \frac{2+2\sqrt{47}}{2}

Factor\;2+2\sqrt{47} \ \textgreater \  Rewrite\;as\;1\cdot \:2+2\sqrt{47}
\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \  2\left(1+\sqrt{47}\right) \ \textgreater \  \frac{2\left(1+\sqrt{47}\right)}{2}

\mathrm{Divide\:the\:numbers:}\:\frac{2}{2}=1 \ \textgreater \  1+\sqrt{47}

Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.

\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

\frac{2-\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  2-\sqrt{188} \ \textgreater \  \frac{2-\sqrt{188}}{2}

\sqrt{188} = 2\sqrt{47} \ \textgreater \  \frac{2-2\sqrt{47}}{2}

2-2\sqrt{47} \ \textgreater \  2\left(1-\sqrt{47}\right) \ \textgreater \  \frac{2\left(1-\sqrt{47}\right)}{2} \ \textgreater \  1-\sqrt{47}

Therefore our final solutions are
x=1+\sqrt{47},\:x=1-\sqrt{47}

Hope this helps!
8 0
3 years ago
Read 2 more answers
Which value could be the length of the missing side of the triangle? (the side of the triangle has 5, the bottom has a 12 and th
sveta [45]
12 is the answer.

Hope it helps!
7 0
4 years ago
Jason had one hundred fifty-nine dollars to spend six books.After buying them he had fifteen dollars.How much did each book cost
Alla [95]

Answer:

11.5

Step-by-step explanation:

Divide: 159:6-15

Calculate: 26.5-15

\\11.5//

6 0
3 years ago
Read 2 more answers
Other questions:
  • The base unit used to measure volume/liquid capacity in the metric system is _______.
    13·2 answers
  • it’s take 4 minutes to fill an empty aquarium to a depth of 2/5 meters. what is the unit rate in minutes per meter?
    13·1 answer
  • What is 5/15 written in simplest form?
    12·2 answers
  • 2x-9x+17=-4<br> I have a answer but I’m not sure if I’m correct so I just want to double check.
    9·2 answers
  • Miley is trying to solve the following riddle the sum of three consecutive integers is 84 what are the integers
    7·1 answer
  • Li had 5 2/3 gallons of juice. He served 2 3/4 gallons at breakfast. How many gallons does Li have left? Enter your answer in th
    13·1 answer
  • if jules asked 100 people how many years of school dud they have and what's their annual income what's the association on a scat
    7·1 answer
  • What do u get when u double 15
    12·2 answers
  • I also need help on this question. Please help me. (x+15) + (x+5) + (x+15) + (x+5)
    5·2 answers
  • This is due in 10 minutes please help
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!