Answer:
General Formulas and Concepts:
<u>Pre-Calculus</u>
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Integration
- Integrals
- Definite/Indefinite Integrals
- Integration Constant C
Integration Rule [Reverse Power Rule]: 
Integration Rule [Fundamental Theorem of Calculus 1]: 
U-Substitution
- Trigonometric Substitution
Reduction Formula: 
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Integrate Pt. 1</u>
<em>Identify variables for u-substitution (trigonometric substitution).</em>
- Set <em>u</em>:

- [<em>u</em>] Differentiate [Trigonometric Differentiation]:

- Rewrite <em>u</em>:

<u>Step 3: Integrate Pt. 2</u>
- [Integral] Trigonometric Substitution:
![\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[1 - sin^2(u)]^\Big{\frac{3}{2}} \, du](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5Ea_b%20%7B%281%20-%20x%5E2%29%5E%5CBig%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%20%5C%2C%20dx%20%3D%20%5Cint%5Climits%5Ea_b%20%7Bcos%28u%29%5B1%20-%20sin%5E2%28u%29%5D%5E%5CBig%7B%5Cfrac%7B3%7D%7B2%7D%7D%20%5C%2C%20du)
- [Integrand] Rewrite:
![\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[cos^2(u)]^\Big{\frac{3}{2}} \, du](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5Ea_b%20%7B%281%20-%20x%5E2%29%5E%5CBig%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%20%5C%2C%20dx%20%3D%20%5Cint%5Climits%5Ea_b%20%7Bcos%28u%29%5Bcos%5E2%28u%29%5D%5E%5CBig%7B%5Cfrac%7B3%7D%7B2%7D%7D%20%5C%2C%20du)
- [Integrand] Simplify:

- [Integral] Reduction Formula:

- [Integral] Simplify:

- [Integral] Reduction Formula:
![\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg|\limits^a_b + \frac{3}{4} \bigg[ \frac{2 - 1}{2}\int\limits^a_b {cos^{2 - 2}(u)} \, du + \frac{cos^{2 - 1}(u)sin(u)}{2} \bigg| \limits^a_b \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5Ea_b%20%7B%281%20-%20x%5E2%29%5E%5CBig%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7Bcos%5E3%28u%29sin%28u%29%7D%7B4%7D%20%5Cbigg%7C%5Climits%5Ea_b%20%2B%20%5Cfrac%7B3%7D%7B4%7D%20%5Cbigg%5B%20%5Cfrac%7B2%20-%201%7D%7B2%7D%5Cint%5Climits%5Ea_b%20%7Bcos%5E%7B2%20-%202%7D%28u%29%7D%20%5C%2C%20du%20%2B%20%5Cfrac%7Bcos%5E%7B2%20-%201%7D%28u%29sin%28u%29%7D%7B2%7D%20%5Cbigg%7C%20%5Climits%5Ea_b%20%5Cbigg%5D)
- [Integral] Simplify:
![\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}\int\limits^a_b {} \, du + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5Ea_b%20%7B%281%20-%20x%5E2%29%5E%5CBig%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7Bcos%5E3%28u%29sin%28u%29%7D%7B4%7D%20%5Cbigg%7C%20%5Climits%5Ea_b%20%2B%20%5Cfrac%7B3%7D%7B4%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B2%7D%5Cint%5Climits%5Ea_b%20%7B%7D%20%5C%2C%20du%20%2B%20%5Cfrac%7Bcos%28u%29sin%28u%29%7D%7B2%7D%20%5Cbigg%7C%20%5Climits%5Ea_b%20%5Cbigg%5D)
- [Integral] Reverse Power Rule:
![\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}(u) \bigg| \limits^a_b + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5Ea_b%20%7B%281%20-%20x%5E2%29%5E%5CBig%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7Bcos%5E3%28u%29sin%28u%29%7D%7B4%7D%20%5Cbigg%7C%20%5Climits%5Ea_b%20%2B%20%5Cfrac%7B3%7D%7B4%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B2%7D%28u%29%20%5Cbigg%7C%20%5Climits%5Ea_b%20%2B%20%5Cfrac%7Bcos%28u%29sin%28u%29%7D%7B2%7D%20%5Cbigg%7C%20%5Climits%5Ea_b%20%5Cbigg%5D)
- Simplify:

- Back-Substitute:

- Simplify:

- Rewrite:

- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e
The range of the quadratic function is [-1, ∞) after plotting the function on the coordinate plane.
<h3>What is a function?</h3>
It is defined as a special type of relationship, and they have a predefined domain and range according to the function every value in the domain is related to exactly one value in the range.
It is given that:
The function is:
f(x) = (x - 4)(x - 2)
The above function is a quadratic function.
The above function can be written as:
f(x) = x² - 6x + 8
From the graph,
The minimum value of graph at x = 3 is y = -1
The range of the function is [-1, ∞)
Thus, the range of the quadratic function is [-1, ∞) after plotting the function on the coordinate plane.
Learn more about the function here:
brainly.com/question/5245372
#SPJ1
Answer:
cool
Step-by-step explanation:
2v + 7 = 3
- 7 - 7
2v = - 4
v = - 2
Answer:
14.95
Step-by-step explanation:
every 1 pound is 2.99 so you would do 2.99 * 5
Answer:
$415.6
Step-by-step explanation:
Given data
Gross weekly pay = $440.00
<em />
<em>Taxes/deductible</em>
Medical insurance = $14.40
Union dues= $10.00
Total deductible= 14.4+10= $24.4
Hence the net pay
= $440-24.4
=$415.6