Answer:
<h3>1.<em>t</em><em>a</em><em>s</em><em>k</em><em> </em><em>4</em><em>1</em><em>0</em><em>(</em><em>B)</em></h3>
<h3><em>2</em><em>.</em><em>b</em><em>o</em><em>t</em><em>h</em><em> </em><em>of </em><em>4</em><em>1</em><em>0</em><em>(</em><em>B</em><em>)</em></h3>
<h2><em>MARK </em><em>ME </em><em>AS </em><em>BRAINLY</em></h2>
<h3><em>#</em><em>C</em><em>a</em><em>r</em><em>r</em><em>y</em><em> </em><em>On </em><em>Learning</em></h3>
U can use the second last one
X + 90 = 2x + 40
4x-5y=-15
That’s the answer your welcome
Answer:
-0.9090... can be written as
.
Explanation:
Any <em>repeating </em>decimal can be written as a fraction by dividing the section of the pattern to be repeated <em>by </em>9's.
We can start by listing out
0.909090... = 9/10 + 0/100 + 9/1000 + 0/10000 + 9/100000 + 0/1000000 + ...
Now. we let this series be equal to x, that is
= 9/10 + 0/100 + 9/1000 + 0/10000 + 9/100000 + 0/1000000 + ...
Now, we'll multiply both sides by 100
.
= 90 + 0 + 9/10 + 0/100 + 9/1000 + 0/10000 + ...
Then, subtract the 1st equation from the second like so:
= 90 + 0 + 9/10 + 0/100 + 9/1000 + 0/10000 + 9/100000 + 0/1000000 + ...
= - 9/10 - 0/100 - 9/1000 - 0/10000 - 9/100000 - 0/1000000 - ...
And we end up with this:

Finally, we divide both sides by 99 in order to isolate x and get the fraction we're looking for.

Which can be reduced and simplified to

Hope this helps!
The answer i got is b<-18.. i’m not sure if it’s right but you could try ! :).. i’m very sorry if you get it wrong .